Volume 43 Issue 3
Apr.  2021
Turn off MathJax
Article Contents
YANG Pengbo, LI Jie, CUI Wennan, ZHANG Tao. Variable Step Autofocus Design for Infrared Telescopes[J]. Infrared Technology , 2021, 43(3): 218-224.
Citation: YANG Pengbo, LI Jie, CUI Wennan, ZHANG Tao. Variable Step Autofocus Design for Infrared Telescopes[J]. Infrared Technology , 2021, 43(3): 218-224.

Variable Step Autofocus Design for Infrared Telescopes

  • Received Date: 2020-03-21
  • Rev Recd Date: 2020-12-30
  • Publish Date: 2021-04-02
  • In long-range target detection and tracking, image clarity plays a critical role. An infrared telescope system has a long imaging distance and a short depth of field, and the image blur caused by defocusing tends to be more severe in this system. In addition, because of the atmospheric refraction, the image derived from the telescope constantly changes. This results in a low focusing success rate and low efficiency in traditional focusing algorithms. To improve both the success rate and speed of autofocus, a mountain climbing algorithmic method with a variable step size was proposed in this study. Image clarity was obtained several times, and its median was calculated to ensure image clarity accuracy. Using the mountain climbing algorithm with momentum and acceleration reduces focusing instability as well as the number of steps required for the coarse focusing process. The algorithm was applied in an actual medium-wave infrared telescope system. Experimental results revealed that the focusing steps required by the algorithm for the coarse focusing stage were reduced by 12.8%, in comparison with the traditional mountain climbing method, meeting the requirements of an infrared telescope system.
  • loading
  • [1]
    李洪宇, 杨帆, 谭文斌, 等. 基于HVS算子的自适应清晰度自动调焦评价函数[J]. 红外技术, 2017, 39(7): 632-637. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201707009.htm

    LI Hongyu, YANG Fan, TAN Wenbin, et al. A Self-adaptive Clarity Auto Focus Evaluation Function Based on HVS Operator[J]. Infrared Technology, 2017, 39(7): 632-637. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201707009.htm
    [2]
    CAO Yongpeng, XIN Chunhui, PAN Qingsong. Study on auto-focusing searching algorithm applied to integrated camera[J]. Journal of Applied Optics, 2018, 39(4): 483-490. http://www.researchgate.net/publication/327689865_Study_on_auto-focusing_searching_algorithm_applied_to_integrated_camera
    [3]
    Erasmus S J, Smith K C A. An automatic focusing and astigmatism correction system for the SEM and CTEM[J]. Journal of Microscopy, 1982, 127(2): 185-199. doi:  10.1111/j.1365-2818.1982.tb00412.x
    [4]
    林兆华, 刘鑫, 王岚, 等. 采用MSP430单片机的自动调焦控制系统在经纬仪上的应用[J]. 电光与控制, 2011, 18(1): 48-52. doi:  10.3969/j.issn.1671-637X.2011.01.012

    LIN Zhaohua, LIU Xin, WANG Lan, et al. Application of MSP430 in Autofocus System of Theodolite[J]. Electronics Optics & Control, 2011, 18(1): 48-52 doi:  10.3969/j.issn.1671-637X.2011.01.012
    [5]
    王昊, 张涛, 张振, 等. 单幅图像估计离焦量的航空摄像机自动调焦系统[J]. 液晶与显示, 2016, 31(5): 484-490. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201605010.htm

    WAHG Hao, ZHANG Tao, ZHANG Zhen, et al. System of aerial camera auto-focus based on defocus estimate by single image[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(5): 484-490. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201605010.htm
    [6]
    YU X, YU R, YANG J, et al. A Robotic Auto-Focus System based on Deep Reinforcement Learning[C]//2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), IEEE, 2018: 204-209.
    [7]
    CHEN R, Van Beek P. Improving the accuracy and low-light performance of contrast-based autofocus using supervised machine learning[J]. Pattern Recognition Letters, 2015, 56: 30-37. doi:  10.1016/j.patrec.2015.01.010
    [8]
    ZHANG Y, LIU L, GONG W, et al. Autofocus system and evaluation methodologies: a literature review[J]. Sens. Mater. , 2018, 30(5): 1165-1174. http://smartsearch.nstl.gov.cn/paper_detail.html?id=972ce9d44629d1ab893e8ac7a2fab1b0
    [9]
    王烨茹, 冯华君, 徐之海, 等. 一种覆盖范围可调的变频梯度自动对焦评价函数[J]. 红外与激光工程, 2016, 45(10): 266-271. doi:  10.3788/IRLA201645.1028001

    WANG Yeru, FENG Huajun, XU Zhihai, et al. An adjustable coverage range autofocus evaluation function using gradient operator with variable frequency[J]. Infrared and Laser Engineering, 2016, 45(10): 266-271. doi:  10.3788/IRLA201645.1028001.
    [10]
    栗洋洋, 刘琳, 彭晴晴, 等. 卡塞格林系统的杂散辐射分析[J]. 激光与红外, 2019, 49(8): 987-991. doi:  10.3969/j.issn.1001-5078.2019.08.014

    LI Yangyang, LIU Lin, PENG Qingqing, et al. Stray radiation analysis of Cassegra in system[J]. LASER & INFRARED, 2019, 49(8): 987-991. doi:  10.3969/j.issn.1001-5078.2019.08.014
    [11]
    SHA X, LI W, LV X, et al. Research on auto-focusing technology for micro vision system[J]. Optik, 2017, 142: 226-233. doi:  10.1016/j.ijleo.2017.06.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (409) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return