Volume 43 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
LI Junbin, LIU Aiming, JIANG Zhi, KONG Jincheng, LI Dongsheng, LI Yanhui, ZHOU Xuchang, YANG Wen. Investigation of Energy Band Structures of InAs/GaSb and M Structure Superlattices[J]. Infrared Technology , 2021, 43(7): 622-628.
Citation: LI Junbin, LIU Aiming, JIANG Zhi, KONG Jincheng, LI Dongsheng, LI Yanhui, ZHOU Xuchang, YANG Wen. Investigation of Energy Band Structures of InAs/GaSb and M Structure Superlattices[J]. Infrared Technology , 2021, 43(7): 622-628.

Investigation of Energy Band Structures of InAs/GaSb and M Structure Superlattices

  • Received Date: 2021-04-20
  • Rev Recd Date: 2021-05-25
  • Publish Date: 2021-07-01
  • In this study, the band structures of conventional InAs/GaSb and M structure super lattices are investigated using the k·p method. First, the band structures of InAs/GaSb super lattices with various period thickness are calculated, and the period structure used for a longwave super lattice detector is obtained. Subsequently, the band structure of the M structure super lattice, which is prevalently employed in longwave super lattice infrared detectors, is also calculated. The band offset between a longwave InAs/GaSb super lattice and M structure super lattice is provided. Furthermore, based on the band structures, the relationship between the carrier density (doping density) and the position of the Fermi level for longwave InAs/GaSb and M structure super lattices is obtained. This was followed by a density of states (DOS) calculation. These calculated material parameters can provide the foundation for designing super lattice infrared detectors.
  • loading
  • [1]
    Rhiger D R. Performance Comparison of Long-Wavelength InfraredType Ⅱ Superlattice Devices with HgCdTe[J]. J. Electron Mater. , 2011, 40: 1815. doi:  10.1007/s11664-011-1653-6
    [2]
    Sai Halasz G A, Tsu R, Esaki L. A new semiconductor superlattice[J]. Appl. Phys. Lett. , 1977, 30: 651. doi:  10.1063/1.89273
    [3]
    Smith D L, Mailhiot C. Proposal for strained type Ⅱ superlattice infrared detectors[J]. J. Appl. Phys. , 1987, 62: 2545. doi:  10.1063/1.339468
    [4]
    Youngsdale E R, Meyer J R, Hoffman C A, et al. Auger lifetime enhancement in InAs-Ga1-xInxSb superlattices[J]. Appl. Phys. Lett. , 1994, 64: 3162. doi:  10.1063/1.111325
    [5]
    Rogalski A, Martyniuk P, Kopytko M. InAs/GaSb type-Ⅱ superlattice infrared detectors: Future prospect[J]. Appl. Phys. Rev. , 2017(4): 031304. http://adsabs.harvard.edu/abs/2017ApPRv...4c1304R
    [6]
    Nguyen B M, Hoffman D, Delaunay PY, et al. Dark current suppression in type Ⅱ InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier[J]. Appl. Phys. Lett. , 2007, 91: 163511. doi:  10.1063/1.2800808
    [7]
    Gunapala S D, Ting D Z, Hill C J, et al. Demonstration of a 1024×1024 Pixel InAs-GaSb Superlattice Focal Plane Array[J]. IEEE Photon. Technol. Lett. , 2010, 22: 1856. doi:  10.1109/LPT.2010.2089677
    [8]
    Klipstein P C, Avnon E, Benny Y, et al. InAs/GaSb Type Ⅱ superlattice barrier devices with a low dark current and a high quantum efficiency[C]//Proc. of SPIE, 2014, 9070: 90700U.
    [9]
    Vurgaftman I, Aifer E H, Canedy C L, et al. Graded band gap for dark-current suppression in long-wave infrared W-structured type-Ⅱ superlattice photodiodes[J]. Appl. Phys. Lett. , 2006, 89: 121114. doi:  10.1063/1.2356697
    [10]
    XU W, LI L L, DONG H M, et al. Band hybridization and spin-splitting in InAs/AlSb/GaSb type Ⅱ and broken-gap quantum wells[J]. J. Appl. Phys. , 2010, 108: 053709. doi:  10.1063/1.3476059
    [11]
    CHUANGS L. Physics of Photonic Devices[M]. New York: Wiley, 2nd ed. 2009.
    [12]
    Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for Ⅲ–V compound semiconductors and their alloys[J]. J. Appl. Phys., 2001, 89: 5815. doi:  10.1063/1.1368156
    [13]
    Shun Lien Chuang. Efficient band-structure calculations of strained quantum wells[J]. Phys. Rev. B, 1991, 43: 9649. doi:  10.1103/PhysRevB.43.9649
    [14]
    Nakamura K, Shimizu A, Koshiba M, et al. Finite-element analysis of the miniband structures of semiconductor superlattices with arbitrary periodic potential profiles[J]. IEEE J. Quantum Electron., 1991, 27: 2053. http://ieeexplore.ieee.org/document/83413
    [15]
    Chuang S L, Chang C S. A band-structure model of strained quantum-well wurtzite semiconductors[J]. Semicond. Sci. Technol. , 1997, 12: 252. doi:  10.1088/0268-1242/12/3/004
    [16]
    Davies J H. The Physics of Low-Dimensional Semiconductors: An Introduction[M]. Cambridge: Cambridge University Press, 2005.
    [17]
    Frank Fuchs, N Herres, J Schmitz, et al. InAs/GaSb superlattices characterized by high-resolution x-ray diffraction and infrared optical spectroscopy[C]//Proc. of SPIE, 1996, 70: 2554.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (415) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return