Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
YE Kuntao, LI Wen, SHU Leilei, LI Sheng. Infrared and Visible Image Fusion Method Based on Improved Saliency Detection and Non-subsampled Shearlet Transform[J]. Infrared Technology , 2021, 43(12): 1212-1221.
Citation: YE Kuntao, LI Wen, SHU Leilei, LI Sheng. Infrared and Visible Image Fusion Method Based on Improved Saliency Detection and Non-subsampled Shearlet Transform[J]. Infrared Technology , 2021, 43(12): 1212-1221.

Infrared and Visible Image Fusion Method Based on Improved Saliency Detection and Non-subsampled Shearlet Transform

  • Received Date: 2021-04-02
  • Rev Recd Date: 2021-04-13
  • Publish Date: 2021-12-20
  • To address the problems in the current infrared and visible image fusion method wherein targets are not prominent and contrast is low based on saliency detection, this paper proposes a fusion method by combining improved saliency detection and non-subsampled shearlet transform (NSST). First, the improved maximum symmetric surround algorithm is used to extract the saliency map of an infrared image, the improved gamma correction method is utilized to enhance the map, and the visible image is enhanced through homomorphic filtering. Second, the infrared and enhanced visible images are decomposed into low-and high-frequency parts through NSST, and the saliency map is used to guide the fusion of the low-frequency parts. Simultaneously, the rule of maximum region energy selection is used to guide the fusion of the high-frequency parts. Finally, the fusion image is reconstructed using the inverse NSST. The experimental results show that the proposed method is far superior to other seven fusion methods in terms of average gradient, information entropy, spatial frequency, and standard deviation. Thus, proposed method can effectively highlight the infrared target, improve the contrast and definition of fused images, and preserve rich background information of visible images.
  • loading
  • [1]
    CHEN J, LI X, LUO L, et al. Infrared and visible image fusion based on target-enhanced multiscale transform decomposition[J]. Information Sciences, 2020, 508(1): 64-78. http://www.sciencedirect.com/science/article/pii/S0020025519308163
    [2]
    崔晓荣, 沈涛, 黄建鲁, 等. 基于BEMD改进的视觉显著性红外和可见光图像融合[J]. 红外技术, 2020, 42(11): 1061-1071. http://hwjs.nvir.cn/article/id/c89c0447-6d07-4a75-99f6-1bf8681cf588

    CUI Xiaorong, SHEN Tao, HUANG Jianlu, et al. Infrared and visble image fusion based on BEMD and improved visual saliency[J]. Infrared Technology, 2020, 42(11): 1061-1071. http://hwjs.nvir.cn/article/id/c89c0447-6d07-4a75-99f6-1bf8681cf588
    [3]
    CHENG B, JIN L, LI G. Infrared and visual image fusion using LNSST and an adaptive dual-channel PCNN with triple-linking strength[J]. Neurocomputing, 2018, 310(10): 135-147. http://www.onacademic.com/detail/journal_1000040423651710_9d04.html
    [4]
    郑伟, 赵成晨, 郝冬梅. NSST和改进PCNN相结合的甲状腺图像融合[J]. 光电工程, 2016, 43(10): 42-48, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201610008.htm

    ZHENG Wei, ZHAO Chengchen, HAO Dongmei. Thyroid image fusion based on NSST and improved PCNN[J]. Opto-Electronic Engineering, 2016, 43(10): 42-48, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201610008.htm
    [5]
    Borji A, Itti L. State-of-the-art in visual attention modeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 185-207. doi:  10.1109/TPAMI.2012.89
    [6]
    傅志中, 王雪, 李晓峰, 等. 基于视觉显著性和NSCT的红外与可见光图像融合[J]. 电子科技大学学报, 2017, 46(2): 357-362. doi:  10.3969/j.issn.1001-0548.2017.02.007

    FU Zhizhong, WANG Xue, LI Xiaofeng, et al. Infrared and visible image fusion based on visual saliency and NSCT[J]. Journal of University of Electronic Science and Technology of China, 2017, 46(2): 357-363. doi:  10.3969/j.issn.1001-0548.2017.02.007
    [7]
    林子慧, 魏宇星, 张建林, 等. 基于显著性图的红外与可见光图像融合[J]. 红外技术, 2019, 41(7): 640-645. http://hwjs.nvir.cn/article/id/hwjs201907008

    LIN Zihui, WEI Yuxing, ZHANG Jianlin, et al. Image fusion of infrared and visible images based on saliency map[J]. Infrared Technology, 2019, 41(7): 640-645. http://hwjs.nvir.cn/article/id/hwjs201907008
    [8]
    安影, 范训礼, 陈莉, 等. 结合FABEMD和改进的显著性检测的图像融合[J]. 系统工程与电子技术, 2020, 42(2): 292-300. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202002006.htm

    AN Ying, FAN Xunli, CHEN Li, et al. Image fusion combining with FABEMD and improved saliency detection[J]. Systems Engineering and Electronics, 2020, 42(2): 292-300. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202002006.htm
    [9]
    Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection[C]//IEEE Conference on Computer Vision & Pattern Recognition, 2009: 1597-1604.
    [10]
    Achanta R, Susstrunk S. Saliency detection using maximum symmetric surround[C]//Proc. of IEEE International Conference on Image Processing, 2010: 2653-2656.
    [11]
    冯维, 吴贵铭, 赵大兴, 等. 多图像融合Retinex用于弱光图像增强[J]. 光学精密工程, 2020, 28(3): 736-744. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202003024.htm

    FENG Wei, WU Guiming, ZHAO Daxing, et al. Multi images fusion Retinex for low light image enhancement[J]. Optics and Precision Engineering, 2020, 28(3): 736-744. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202003024.htm
    [12]
    吴京辉, 唐林波, 赵保军. 局部特征与全局信息联合的自适应图像增强算法[J]. 北京理工大学学报, 2014, 34(9): 955-960. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201409015.htm

    WU Jinghui, TANG Linbo, ZHAO Baojun. Local-to-global adaptive image enhancement algorithm[J]. Transactions of Beijing Institute of Technology, 2014, 34(9): 955-960. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201409015.htm
    [13]
    ZHAI Y, SHAH M. Visual attention detection in video sequences using spatiotemporal cues[C]//Proceedings of the 14th ACM International Conference on Multimedia, 2006: 815-824.
    [14]
    DONG S, MA J, SU Z, et al. Robust circular marker localization under non-uniform illuminations based on homomorphic filtering[J]. Measurement, 2021, 170(1): 108700. http://www.sciencedirect.com/science/article/pii/S0263224120312070
    [15]
    焦姣, 吴玲达, 于少波, 等. 混合多尺度分析和改进PCNN相结合的图像融合方法[J]. 计算机辅助设计与图形学学报, 2019, 31(6): 988-996. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201906015.htm

    JIAO Jiao, WU Lingda, YU Shaobo, et al. Image fusion method using multi-scale analysis and improved PCNN[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(6): 988-996. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201906015.htm
    [16]
    Burt P J, Adelson E H. The laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications, 1983, 31(4): 532-540. doi:  10.1109/TCOM.1983.1095851
    [17]
    Nencini F, Garzelli A, Baronti S, et al. Remote sensing image fusion using the curvelet transform[J]. Information Fusion, 2007, 8(2): 143-156. doi:  10.1016/j.inffus.2006.02.001
    [18]
    ZHANG Q, GUO B. Multifocus image fusion using the nonsubsampled contourlet transform[J]. Signal Process, 2009, 89(7): 1334-1346. doi:  10.1016/j.sigpro.2009.01.012
    [19]
    YIN M, LIU X, LIU Y, et al. Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(1): 49-64. doi:  10.1109/TIM.2018.2838778
    [20]
    Figshare. TNO Image Fusion Dataset[EB/OL]. [2014-04-26]. https://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (235) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return