Volume 46 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
MA Xingzhao, TANG Libin, ZUO Wenbin, ZHANG Yuping, JI Rongbin. Research Progress in the Metal Oxide Heterojunction Photodetectors[J]. Infrared Technology , 2024, 46(4): 363-375.
Citation: MA Xingzhao, TANG Libin, ZUO Wenbin, ZHANG Yuping, JI Rongbin. Research Progress in the Metal Oxide Heterojunction Photodetectors[J]. Infrared Technology , 2024, 46(4): 363-375.

Research Progress in the Metal Oxide Heterojunction Photodetectors

  • Received Date: 2024-03-08
  • Rev Recd Date: 2024-04-13
  • Publish Date: 2024-04-20
  • Metal oxides (MOs) have been widely used in photodetection because of advantages such as easy preparation, high stability, and selective transport of carriers. The MO materials exhibit strong light absorption properties. However, there are issues with MO photodetectors such as their low response speed and large dark current owing to the surface effects and defect states. The built-in electric field in the heterojunction can effectively promote the separation of photogenerated electron-hole pairs, thus improving the device response speed and reducing the dark current. Thus, the construction of metal oxide heterojunction photodetectors (HPDs) is of great significance for the further application of MO in the field of optoelectronics. This paper introduces the interface properties of MO and elaborates on the working mechanism of metal oxide HPDs around the PN, PIN, and isotype heterojunctions. Next, the performance parameters of MO/MO and MO/Si HPDs with different structure and response in UV-Vis-NIR band are analyzed and compared. Subsequently, improved methods of the metal oxide HPDs performances are discussed. Finally, the development of metal oxide HPDs is discussed.
  • loading
  • [1]
    YU X, Marks T J, Facchetti A. Metal oxides for optoelectronic applications[J]. Nature Materials, 2016, 15(4): 383-396. doi:  10.1038/nmat4599
    [2]
    YAO J Q, DENG H, LI M, et al. Improving processes on ZnO-based ultraviolet photodetector[J]. Advanced Materials Research, 2013, 685: 195-200. doi:  10.4028/www.scientific.net/AMR.685.195
    [3]
    Goldberg Y. Semiconductor near-ultraviolet photoelectronics[J]. Semiconductor Technology, 1999, 14(7): R41. doi:  10.1088/0268-1242/14/7/201
    [4]
    CHEN X, REN F, GU S, et al. Review of gallium-oxide-based solar -blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381-415. doi:  10.1364/PRJ.7.000381
    [5]
    Kar A, Stroscio M A, Dutta M, et al. Meyyappan, Observation of ultraviolet emission and effect of surface states on the luminescence from tin oxide nanowires[J]. Applied Physics Letters, 2009, 94: 101905. doi:  10.1063/1.3097011
    [6]
    LI Lin, SUN Yuxuan, SUN Weifeng. First-principles study of electronic structure, magnetic and optical properties of laminated molybdenum oxides[J]. Acta PhysicaSinica, 2019, 68(5): 057101-3.
    [7]
    XIAO Z R, GUO G Y. Structural, electronic and magnetic properties of V2O5-x: An ab initio study[J]. The Journal of Chemical Physics, 2009, 130(21): 214704. doi:  10.1063/1.3146790
    [8]
    Hwang J D, Chen H Y, Chen Y H, et al. Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering[J]. Nanotechnology, 2018, 29(29): 295705. doi:  10.1088/1361-6528/aac230
    [9]
    OUYANG W, TENG F, HE J H, et al. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering[J]. Advanced Functional Materials, 2019, 29(9): 1807672. doi:  10.1002/adfm.201807672
    [10]
    郭天超. 金属氧化物/硅异质结光电探测器的构建及性能调控[D]. 北京: 中国石油大学, 2020: 16.

    GUO Tianchao, Construction and Performance Modulation of Metal Oxides/Silicon Heterojunction Photodetectors[D]. Beijing: China University of Petroleum, 2020: 16.
    [11]
    CHEN S, FU Y, Ishaq M, et al. Carrier recombination suppression and transport enhancement enable high-performance self-powered broadband Sb2Se3 photodetectors[J]. InfoMat, 2023, 5(4): e12400. doi:  10.1002/inf2.12400
    [12]
    HWANG H Y, Iwasa Y, Kawasaki M, et al. Emergent phenomena at oxide interfaces[J]. Nature Materials, 2012, 11(2): 103-113. doi:  10.1038/nmat3223
    [13]
    Mannhart J, Schlom D G. Oxide interfaces—an opportunity for electronics[J]. Science, 2010, 327(5973): 1607-1611. doi:  10.1126/science.1181862
    [14]
    Kennedy D. Breakthrough of the year[J]. Science, 2007, 318(5858): 1833-1833. doi:  10.1126/science.1154158
    [15]
    Shim M, Guyot-Sionnest P. N-type colloidal semiconductor nanocrystals[J]. Nature, 2000, 407(6807): 981-983. doi:  10.1038/35039577
    [16]
    JI T, LIU Q, ZOU R, et al. Enhanced UV-visible light photodetectors with a TiO2/Si heterojunction using band engineering[J]. Journal of Materials Chemistry C, 2017, 5(48): 12848-12856. doi:  10.1039/C7TC04811D
    [17]
    CHEN X, XU Y, ZHOU D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures[J]. ACS Applied materials & Interfaces, 2017, 9(42): 36997-37005.
    [18]
    Serin N, Yildiz A, Alsaç A A, et al. Estimation of compensation ratio by identifying the presence of different hopping conduction mechanisms in SnO2 thin films[J]. Thin Solid Films, 2011, 519(7): 2302-2307. doi:  10.1016/j.tsf.2010.11.027
    [19]
    Choi J M, Im S. Ultraviolet enhanced Si-photodetector using p-NiO films[J]. Applied Surface Science, 2005, 244(1-4): 435-438. doi:  10.1016/j.apsusc.2004.09.152
    [20]
    Almora O, Gerling L G, Voz C, et al. Superior performance of V2O5 as hole selective contact over other transition metal oxides in silicon heterojunction solar cells[J]. Solar Energy Materials and Solar Cells, 2017, 168: 221-226. doi:  10.1016/j.solmat.2017.04.042
    [21]
    Bullock J, WAN Y, XU Z, et al. Stable dopant-free asymmetric heterocontact silicon solar cells with efficiencies above 20%[J]. ACS Energy Letters, 2018, 3(3): 508-513. doi:  10.1021/acsenergylett.7b01279
    [22]
    WU W, BAO J, JIA X, et al. Dopant-free back contact silicon heterojunction solar cells employing transition metal oxide emitters[J]. PhysicaStatus Solidi-Rapid Research Letters, 2016, 10(9): 662-667. doi:  10.1002/pssr.201600254
    [23]
    Costas A, Florica C, Preda N, et al. Radial heterojunction based on single ZnO-CuxO core-shell nanowire for photodetector applications[J]. Scientific Reports, 2019, 9(1): 5553. doi:  10.1038/s41598-019-42060-w
    [24]
    Ahmed A A, Hashim M R, Qahtan T F, et al. Preparation and characteristics study of self-powered and fast response p-NiO/n-Si heterojunction photodetector[J]. Ceramics International, 2022, 48(14): 20078-20089. doi:  10.1016/j.ceramint.2022.03.285
    [25]
    HWANG J D, WU M S. Separate absorption and multiplication solar-blind photodiodes based on p-NiO/MgO/n-ZnO heterostructure[J]. Nanotechnology, 2020, 32(1): 015503.
    [26]
    QIAN H, ZHANG X, MA Y, et al. Quasi-vertical ε-Ga2O3 solar-blind photodetectors grown on p-Si substrates with Al2O3 buffer layer by metalorganic chemical vapor deposition[J]. Vacuum, 2022, 200: 111019. doi:  10.1016/j.vacuum.2022.111019
    [27]
    Mondal S, Halder S, Basak D. Ultrafast and ultrabroadband UV-vis-NIR photosensitivity under reverse and self-bias conditions by n+-ZnO/n-Si isotype heterojunction with > 1 kHz bandwidth[J]. ACS Applied Electronic Materials, 2023, 5(2): 1212-1223. doi:  10.1021/acsaelm.2c01668
    [28]
    Reddy Y A K, Ajitha B, Sreedhar A, et al. Enhanced UV photodetector performance in bi-layer TiO2/WO3 sputtered films[J]. Applied Surface Science, 2019, 494: 575-582. doi:  10.1016/j.apsusc.2019.07.124
    [29]
    ZU P, TANG Z K, WONG G K L, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature[J]. Solid State Communications, 1997, 103(8): 459-463. doi:  10.1016/S0038-1098(97)00216-0
    [30]
    Kawazoe H, Yanagi H, Ueda K, et al. Transparent p-type conducting oxides: design and fabrication of pn heterojunctions[J]. MRS Bulletin, 2000, 25(8): 28-36. doi:  10.1557/mrs2000.148
    [31]
    Park J W, Bogorin D F, Cen C, et al. Creation of a two-dimensional electron gas at an oxide interface on silicon[J]. Nature Communications, 2010, 1(1): 94. doi:  10.1038/ncomms1096
    [32]
    HONG Q, CAO Y, XU J, et al. Self-powered ultrafast broadband photodetector based on p–n heterojunctions of CuO/Si nanowire array[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 20887-20894.
    [33]
    ZOU H, LI X, PENG W, et al. Piezo-phototronic effect on selective electron or hole transport through depletion region of vis-NIR broadband photodiode[J]. Advanced Materials, 2017, 29(29): 1701412. doi:  10.1002/adma.201701412
    [34]
    WEI C, XU J, SHI S, et al. The improved photoresponse properties of self-powered NiO/ZnO heterojunction arrays UV photodetectors with designed tunable Fermi level of ZnO[J]. Journal of Colloid and Interface Science, 2020, 577: 279-289. doi:  10.1016/j.jcis.2020.05.077
    [35]
    LONG Z, XU X, YANG W, et al. Cross-bar SnO2-NiO nanofiber-array-based transparent photodetectors with high detectivity[J]. Advanced Electronic Materials, 2020, 6(1): 1901048. doi:  10.1002/aelm.201901048
    [36]
    ZHAO B, WANG F, CHEN H, et al. Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core–shell microwire[J]. Nano Letters, 2015, 15(6): 3988-3993. doi:  10.1021/acs.nanolett.5b00906
    [37]
    Alwadai N, Alharbi Z, Alreshidi F, et al. Enhanced Photoresponsivity UV-C photodetectors using a p–n junction based on ultra-wide-band gap Sn-doped β-Ga2O3 microflake/MnO quantum dots[J]. ACS Applied Materials & Interfaces, 2023, 15(9): 12127-12136.
    [38]
    XU R, RUAN S, ZHANG D, et al. Enhanced performance of ultraviolet photodetector modified by quantum dots with high responsivity and narrow detection region[J]. Journal of Alloys and Compounds, 2018, 751: 117-123. doi:  10.1016/j.jallcom.2018.03.382
    [39]
    HE C, GUO D, CHEN K, et al. α-Ga2O3 nanorod array——Cu2O microsphere p–n junctions for self-powered spectrum-distinguishable photodetectors[J]. ACS Applied Nano Materials, 2019, 2(7): 4095-4103. doi:  10.1021/acsanm.9b00527
    [40]
    WANG D, SHI P, XING R, et al. Self-powered ZnO/SrCoOx flexible ultraviolet detectors processed at room temperature[J]. Materials & Design, 2021, 203: 109616.
    [41]
    WU Z, ZHANG Z, SUN M, et al. Self-powered photodetector based on p-type CuBi2O4 with Fermi level engineering[J]. Advanced Materials Interfaces, 2021, 8(24): 2101443. doi:  10.1002/admi.202101443
    [42]
    Ashtar M, Marwat M A, LI Z, et al. Self-powered ultraviolet/visible photodetector based on CuBi2O4/PbZr0.52Ti0.48O3 heterostructure[J]. Journal of Luminescence, 2023, 260: 119855. doi:  10.1016/j.jlumin.2023.119855
    [43]
    SA T, WU G, QIN N, et al. Solution processed highly sensitive visible-light photodetectors based on α-Fe2O3/p-Si heterojunctions[J]. Sensors and Actuators B: Chemical, 2012, 173: 414-418. doi:  10.1016/j.snb.2012.07.027
    [44]
    ZHANG M, ZHANG H, LV K, et al. Ultraviolet photodetector with high internal gain enhanced by TiO2/SrTiO3 heterojunction[J]. Optics Express, 2012, 20(6): 5936-5941. doi:  10.1364/OE.20.005936
    [45]
    Kim D Y, Ryu J, Manders J, et al. Air-stable, solution-processed oxide p–n heterojunction ultraviolet photodetector[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1370-1374.
    [46]
    XIE T, Hasan M R, QIU B, et al. High-performing visible-blind photodetectors based on SnO2/CuO nanoheterojunctions[J]. Applied Physics Letters, 2015, 107(24): 241108. doi:  10.1063/1.4938129
    [47]
    XIE X, ZHANG Z, LI B, et al. Ultra-low threshold avalanche gain from solar-blindphotodetector based on graded-band-gap-cubic-MgZnO[J]. Optics Express, 2015, 23(25): 32329-32336. doi:  10.1364/OE.23.032329
    [48]
    ZHAO C, LIANG Z, Su M, et al. Self-powered, high-speed and visible–near infrared response of MoO3–x/n-Si heterojunction photodetector with enhanced performance by interfacial engineering[J]. ACS Applied Materials & Interfaces, 2015, 7(46): 25981-25990.
    [49]
    GUO X C, HAO N H, GUO D Y, et al. β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity[J]. Journal of Alloys and Compounds, 2016, 660: 136-140. doi:  10.1016/j.jallcom.2015.11.145
    [50]
    HWANG J D, WANG S Y, HWANG S B. Using oxygen-plasma treatment to improve the photoresponse of Mg0.18Zn0.82O/p-Si heterojunction photodetectors[J]. Journal of Alloys and Compounds, 2016, 656: 618-621. doi:  10.1016/j.jallcom.2015.10.065
    [51]
    LI G, LIU L, WU G, et al. Self-powered UV——near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction[J]. Small, 2016, 12(36): 5019-5026. doi:  10.1002/smll.201600835
    [52]
    Ahmed A A, Devarajan M, Afzal N. Fabrication and characterization of high performance MSM UV photodetector based on NiO film[J]. Sensors and Actuators A: Physical, 2017, 262: 78-86. doi:  10.1016/j.sna.2017.05.028
    [53]
    LING C, GUO T, LU W, et al. Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction[J]. Nanoscale, 2017, 9(25): 8848-8857. doi:  10.1039/C7NR03437G
    [54]
    ZHANG D, LIU C, XU R, et al. The effect of self-depleting in UV photodetector based on simultaneously fabricated TiO2/NiOpn hetero-junction and Ni/Au composite electrode[J]. Nanotechnology, 2017, 28(36): 365505. doi:  10.1088/1361-6528/aa7bb8
    [55]
    Flemban T H, Haque M A, Ajia I, et al. A photodetector based on p-Si/n-ZnO nanotube heterojunctions with high ultraviolet responsivity[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 37120-37127.
    [56]
    Chauhan K R, Patel D B. Functional nanocrystalline TiO2 thin films for UV enhanced highly responsive silicon photodetectors[J]. Journal of Alloys and Compounds, 2019, 792: 968-975. doi:  10.1016/j.jallcom.2019.04.111
    [57]
    FU Y, LIU Y, MA K, et al. Interfacial engineering to boost photoresponse performance and stability of V2O5/n-Si heterojunction photodetectors[J]. Journal of Alloys and Compounds, 2020, 819: 153063. doi:  10.1016/j.jallcom.2019.153063
    [58]
    ZHANG Z, NING Y, FANG X. From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photo-detectors[J]. Journal of Materials Chemistry C, 2019, 7(2): 223-229. doi:  10.1039/C8TC05877F
    [59]
    Yuvaraja S, Kumar V, Dhasmana H, et al. Ultraviolet detection properties of electrodeposited n-SnO2 modified p-Si nanowires hetero-junction photodiode[J]. Journal of Materials Science: Materials in Electronics, 2019, 30: 7618-7628. doi:  10.1007/s10854-019-01077-7
    [60]
    JIA M, WANG F, TANG L, et al. High-performance deep ultraviolet photodetector based on NiO/β-Ga2O3 heterojunction[J]. Nanoscale Research Letters, 2020, 15(1): 47. doi:  10.1186/s11671-020-3271-9
    [61]
    FU Q M, PENG J L, YAO Z C, et al. Highly sensitive ultraviolet photodetectors based on ZnO/SnO2 core-shell nanorod arrays[J]. Applied Surface Science, 2020, 527: 146923. doi:  10.1016/j.apsusc.2020.146923
    [62]
    HUANG C Y, WEI E C, YUAN C T. Dual functional modes for nano-structured p-Cu2O/n-Si heterojunction photodiodes[J]. Nanotechnology, 2020, 32(7): 075202.
    [63]
    XU Y, SHEN H, XU B, et al. High-performance MoOx/n-Si heterojunction NIR photodetector with aluminum oxide as a tunneling passivation interlayer[J]. Nanotechnology, 2021, 32(27): 275502. doi:  10.1088/1361-6528/abf37c
    [64]
    WANG M, ZHANG J, XIN Q, et al. Self-powered UV photodetectors and imaging arrays based on NiO/IGZO heterojunctions fabricated at room temperature[J]. Optics Express, 2022, 30(15): 27453-27461. doi:  10.1364/OE.463926
    [65]
    Kadhm A J, Ismail R A, Atwan A F. Fabrication of visible-enhanced nanostructured Mn2O3/Si heterojunction photodetector by rapid thermal oxidation[J]. Silicon, 2022, 14(10): 5297-5310. doi:  10.1007/s12633-021-01314-x
    [66]
    Ismail R A, Al-Samarai A M E, Ahmed F M. Preparation of high-quantum efficiency nanostructured Ag2O/Si photodetector by rapid thermal oxidation of Ag2S film: the role of oxidation time[J]. Optik, 2022, 257: 168794. doi:  10.1016/j.ijleo.2022.168794
    [67]
    SHANG G, TANG L, WU G, et al. High-performance NiO/TiO2/ZnO photovoltaic UV detector[J]. Sensors, 2023, 23(5): 2741. doi:  10.3390/s23052741
    [68]
    JIA M, WANG F, TANG L, et al. Low-power-consumption ultraviolet photodetector based on p-NiO/SiO2/n-ZnO[J]. Optics & Laser Technology, 2023, 157: 108634.
    [69]
    HWANG J D, LIN M C. ZnO hole blocking layer induced highly UV responsive p-NiO/n-ZnO/n-Si heterojunction photodiodes[J]. Sensors and Actuators A: Physical, 2023, 349: 114087. doi:  10.1016/j.sna.2022.114087
    [70]
    Basak D, Amin G, Mallik B, et al. Photoconductive UV detectors on sol-gel-synthesized ZnO films[J]. Journal of Crystal Growth, 2003, 256(1-2): 73-77. doi:  10.1016/S0022-0248(03)01304-6
    [71]
    WANG Y, WU C, GUO D, et al. All-oxide NiO/Ga2O3 p-n junction for self-powered UV photodetector[J]. ACS Applied Electronic Materials, 2020, 2(7): 2032-2038. doi:  10.1021/acsaelm.0c00301
    [72]
    ZOU J, ZHANG Q, HUANG K, et al. Ultraviolet photodetectors based on anodic TiO2 nanotube arrays[J]. The Journal of Physical Chemistry C, 2010, 114(24): 10725-10729. doi:  10.1021/jp1011236
    [73]
    CAO R, XU J, SHI S, et al. High-performance self-powered ultraviolet photodetectors based on mixed-dimensional heterostructure arrays formed from NiO nanosheets and TiO2 nanorods[J]. Journal of Materials Chemistry C, 2020, 8(28): 9646-9654. doi:  10.1039/D0TC01956A
    [74]
    LI Z, QIAO H, GUO Z, et al. High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability[J]. Advanced Functional Materials, 2018, 28(16): 1705237. doi:  10.1002/adfm.201705237
    [75]
    Cheemadan S, Kumar M C S. Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films[J]. Materials Research Express, 2018, 5(4): 046401. doi:  10.1088/2053-1591/aab875
    [76]
    Chaoudhary S, Dewasi A, Rastogi V, et al. Laser ablation fabrication of a p-NiO/n-Si heterojunction for broadband and self-powered UV-visible-NIR photodetection[J]. Nanotechnology, 2022, 33(25): 255202. doi:  10.1088/1361-6528/ac5ca6
    [77]
    Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J]. Advanced Materials, 2003, 15(5): 464-466. doi:  10.1002/adma.200390108
    [78]
    JIANG D Y, ZHANG X Y, LIU Q S, et al. Improved ultraviolet/visible rejection ratio using MgZnO/SiO2/n-Si heterojunction photodetectors[J]. Applied Surface Science, 2010, 256(21): 6153-6156. doi:  10.1016/j.apsusc.2010.03.051
    [79]
    ZHANG T C, GUO Y, MEI Z X, et al. Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO∕p-Si[J]. Applied Physics Letters, 2009, 94(11): 113508. doi:  10.1063/1.3103272
    [80]
    Tasi D S, KANG C F, WANG H H, et al. n-ZnO/LaAlO3/p-Si heterojunction for visible-blind UV detection[J]. Optics Letters, 2012, 37(6): 1112-1114. doi:  10.1364/OL.37.001112
    [81]
    LI Q, LI Z, YANG H, et al. Novel aluminum plasmonic absorber enhanced by extraordinary optical transmission[J]. Optics Express, 2016, 24(22): 25885-25893. doi:  10.1364/OE.24.025885
    [82]
    WU Y, SUN X J, JIA Y P, et al. Review of improved spectral response of ultraviolet photodetectors by surface plasmon[J]. Chinese Physics B, 2018, 27(12): 126101. doi:  10.1088/1674-1056/27/12/126101
    [83]
    El-Mahalawy A M, Wassel A R. Enhancement of organic/inorganic hybrid photodetector based on pentacene/n-Si by surface plasmonic effect of gold and silver nanoparticles: a comparative study[J]. Optics & Laser Technology, 2020, 131: 106395.
    [84]
    Hsu C L, WANG Y C, CHANG S P, et al. Ultraviolet/visible photodetectors based on p-n NiO/ZnO nanowires decorated with Pd nanoparticles[J]. ACS Applied Nano Materials, 2019, 2(10): 6343-6351. doi:  10.1021/acsanm.9b01333
    [85]
    ZHANG X, CHEN Y L, LIU R S, et al. Plasmonic photocatalysis[J]. Reports on Progress in Physics, 2013, 76(4): 046401. doi:  10.1088/0034-4885/76/4/046401
    [86]
    Kodama R H, Berkowitz A E. Atomic-scale magnetic modeling of oxide nanoparticles[J]. Physical Review B, 1999, 59(9): 6321. doi:  10.1103/PhysRevB.59.6321
    [87]
    El-Mahalawy A M, Abdrabou M M, Wassel A R, et al. Plasmonic enhanced ultraviolet photodetection performance of n-TiO2/p-Si anisotype heterojunction with aluminum patterned array[J]. Journal of Physics and Chemistry of Solids, 2022, 170: 110943. doi:  10.1016/j.jpcs.2022.110943
    [88]
    HWANG J D, WANG S T. High-performance multicolor p-Ag: NiOx/n-Si heterojunction photodiode enhanced by Ag-doped NiOx[J]. Materials Science in Semiconductor Processing, 2022, 139: 106376. doi:  10.1016/j.mssp.2021.106376
    [89]
    Ruzgar S, Caglar Y, Polat O, et al. An Investigation of the optoelectrical properties of n-TiO2Eu/p-Si heterojunction photodiode[J]. Surfaces and Interfaces, 2022, 30: 101832. doi:  10.1016/j.surfin.2022.101832
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (70) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return