Volume 44 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
ZHAO Yiqun, WU Zhenfen, YANG Xiaojie, DENG Dazheng, LIU Xue’e, ZHOU Huiqun. Research Progress on Stability of PbS Colloidal Quantum Dots[J]. Infrared Technology , 2022, 44(3): 205-211.
Citation: ZHAO Yiqun, WU Zhenfen, YANG Xiaojie, DENG Dazheng, LIU Xue’e, ZHOU Huiqun. Research Progress on Stability of PbS Colloidal Quantum Dots[J]. Infrared Technology , 2022, 44(3): 205-211.

Research Progress on Stability of PbS Colloidal Quantum Dots

  • Received Date: 2021-04-19
  • Rev Recd Date: 2021-08-20
  • Publish Date: 2022-03-20
  • Due to the simple preparation, low cost, and adjustable bandgap via changing their sizes in the near-infrared band, PbS colloidal quantum dots (QDs) have been widely used in many fields such as solar cell, infrared detection, LED, and biological imaging. However, instability limits further practical application. In this study, the instability mechanism of PbS colloidal QDs was investigated, and measures to improve their stability are discussed in terms of preparation, structure, preservation, and application. Measures and mechanisms for further improving stability are proposed, which have great value for their application and development.
  • loading
  • [1]
    ZHAO Y, YANG S, ZHAO J, et al. PbS quantum dots based organic-inorganic hybrid infrared detecting and display devices[J]. Mater. Lett. , 2017, 196: 176-178. doi:  10.1016/j.matlet.2017.03.009
    [2]
    HOU B, CHO Y, Kim B S, et al. Highly monodispersed PbS quantum dots for outstanding cascaded-junction solar cells[J]. ACS Energy Lett. , 2016, 1(4): 834-839. doi:  10.1021/acsenergylett.6b00294
    [3]
    ZHANG B, LI G, ZHANG J, et al. Synthesis and characterization of PbS nanocrystals in water/C12E9/cyclohexane microemulsions[J]. Nanotechnology, 2003, 14(4): 443-446. doi:  10.1088/0957-4484/14/4/307
    [4]
    YANG X, YANG J, KHAN J, et al. Hydroiodic acid additive enhanced the performance and stability of PbS-QDs solar cells via suppressing hydroxyl ligand[J]. Nanomicro Lett. , 2020, 12(1): 37.
    [5]
    CHUANG C H, Brown P R, Bulovic V, et al. Improved performance and stability in quantum dot solar cells through band alignment engineering[J]. Nat. Mater. , 2014, 13(8): 796-801. doi:  10.1038/nmat3984
    [6]
    Shrestha A, Batmunkh M, Tricoli A, et al. Near-infrared active lead chalcogenide quantum dots: preparation, post-synthesis lig and exchange, and applications in solar cells[J]. Angew. Chem. Int. Ed. , 2019, 58(16): 5202-5224. doi:  10.1002/anie.201804053
    [7]
    Tavakoli Dastjerdi H, Tavakoli R, Yadav P, et al. Oxygen plasma-induced p-type doping improves performance and stability of PbS quantum dot solar cells[J]. ACS Appl. Mater. Interfaces, 2019, 11(29): 26047-26052. doi:  10.1021/acsami.9b08466
    [8]
    LIN Q, YUN H J, LIU W, et al. Phase-transfer ligand exchange of lead chalcogenide quantum dots for direct deposition of thick, highly conductive films[J]. J. Am. Chem. Soc. , 2017, 139(19): 6644-6653. doi:  10.1021/jacs.7b01327
    [9]
    De Iacovo A, Venettacci C, Colace L, et al. PbS colloidal quantum dot photodetectors operating in the near infrared[J]. Sci. Rep. , 2016, 6: 37913. doi:  10.1038/srep37913
    [10]
    Venettacci C, Martin-Garcia B, Prato M, et al. Increasing responsivity and air stability of PbS colloidal quantum dot photoconductors with iodine surface ligands[J]. Nanotechnology, 2019, 30(40): 405204. doi:  10.1088/1361-6528/ab2f4b
    [11]
    Georgitzikis E, Malinowski P E, Li Y, et al. Integration of PbS quantum dot photodiodes on silicon for NIR imaging[J]. IEEE Sens. J. , 2020, 20(13): 6841-6848. doi:  10.1109/JSEN.2019.2933741
    [12]
    CHEN W, TANG H, CHEN Y, et al. Spray-deposited PbS colloidal quantum dot solid for near-infrared photodetectors[J]. Nano Energy, 2020, 78: 105254. doi:  10.1016/j.nanoen.2020.105254
    [13]
    Ahn S, CHUNG H, CHEN W, et al. Optoelectronic response of hybrid PbS-QD/graphene photodetectors[J]. J. Phys. Chem. B, 2019, 151(23): 234705. doi:  10.1063/1.5132562
    [14]
    SUN L, Choi J J, Stachnik D, et al. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control[J]. Nature Nanotechnology, 2012, 7(6): 369-373. doi:  10.1038/nnano.2012.63
    [15]
    Shirasaki Y, Supran G J, Bawendi M G, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature Photonics, 2013, 7(1): 13-23. doi:  10.1038/nphoton.2012.328
    [16]
    Zaini M S, Liew J Y C, Alang Ahmad S A, et al. Photoluminescence investigation of carrier localization in colloidal PbS and PbS/MnS quantum dots[J]. ACS Omega, 2020, 5(48): 30956-30962. doi:  10.1021/acsomega.0c03768
    [17]
    Pradhan S, Di Stasio F, Bi Y, et al. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level[J]. Nat Nanotechnol, 2019, 14(1): 72-79. doi:  10.1038/s41565-018-0312-y
    [18]
    LIU H, ZHONG H, ZHENG F, et al. Near-infrared lead chalcogenide quantum dots: Synthesis and applications in light emitting diodes[J]. Chinese Phys. B, 2019, 28(12): 128504. doi:  10.1088/1674-1056/ab50fa
    [19]
    Imamura Y, Yamada S, Tsuboi S, et al. Near-infrared emitting PbS quantum dots for in vivo fluorescence imaging of the thrombotic state in septic mouse brain[J]. Molecules, 2016, 21(8): 1080. doi:  10.3390/molecules21081080
    [20]
    Benayas A, Ren F, Carrasco E, et al. PbS/CdS/ZnS quantum dots: A multifunctional platform for in vivo near-infrared low-dose fluorescence imaging[J]. Adv. Funct. Mater. , 2015, 25(42): 6650-6659. doi:  10.1002/adfm.201502632
    [21]
    Raissi M, Sajjad M T, Pellegrin Y, et al. Size dependence of efficiency of PbS quantum dots in NiO-based dye sensitised solar cells and mechanistic charge transfer investigation[J]. Nanoscale, 2017, 9(40): 15566-15575. doi:  10.1039/C7NR03698A
    [22]
    Cademartiri L, Bertolotti J, Sapienza R, et al. Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals[J]. J Phys. Chem. B, 2006, 110(2): 671-673. doi:  10.1021/jp0563585
    [23]
    ZHOU S, LIU Z, WANG Y, et al. Towards scalable synthesis of high-quality PbS colloidal quantum dots for photovoltaic applications[J]. J. Mater. Chem. C, 2019, 7(6): 1575-1583. doi:  10.1039/C8TC05353G
    [24]
    Moreels I, Lambert K, Smeets D, et al. Size-dependent optical properties of colloidal PbS quantum dots[J]. ACS Nano, 2009, 3(10): 3023-3030. doi:  10.1021/nn900863a
    [25]
    ZHANG J, Crisp R W, GAO J, et al. Synthetic conditions for high-accuracy size control of PbS quantum dots[J]. J. Phys. Chem. Lett. , 2015, 6(10): 1830-1833. doi:  10.1021/acs.jpclett.5b00689
    [26]
    Čapek R K, Lambert K, Dorfs D, et al. Synthesis of extremely small CdSe and bright blue luminescent CdSe/ZnS nanoparticles by a prefocused hot-injection approach[J]. Chem. Mater. , 2009, 21(8): 1743-1749. doi:  10.1021/cm900248b
    [27]
    KUO Y C, WANG Q, Ruengruglikit C, et al. Antibody-conjugated CdTe quantum dots for escherichia coli detection[J]. J. Phys. Chem. C, 2008, 112(13): 4818-4824. doi:  10.1021/jp076209h
    [28]
    MAO X, YU J, XU J, et al. Enhanced performance of all solid-state quantum dot-sensitized solar cells via synchronous deposition of PbS and CdS quantum dots[J]. New J. Chem. , 2020, 44(2): 505-512. doi:  10.1039/C9NJ05344A
    [29]
    Skurlov I D, Korzhenevskii I G, Mudrak A S, et al. Optical properties, morphology, and stability of iodide-passivated lead sulfide quantum dots[J]. Materials, 2019, 12(19): 3219. doi:  10.3390/ma12193219
    [30]
    Beygi H, Sajjadi S A, Babakhani A, et al. Surface chemistry of as-synthesized and air-oxidized PbS quantum dots[J]. Appl. Surf. Sci. , 2018, 457: 1-10. doi:  10.1016/j.apsusc.2018.06.152
    [31]
    Choi H, Ko J H, Kim Y H, et al. Steric-hindrance-driven shape transition in PbS quantum dots: understanding size-dependent stability[J]. J. Am. Chem. Soc., 2013, 135(14): 5278-5281. doi:  10.1021/ja400948t
    [32]
    Kagan C R, Murray C B. Charge transport in strongly coupled quantum dot solids[J]. Nat Nanotechnol, 2015, 10(12): 1013-1026. doi:  10.1038/nnano.2015.247
    [33]
    Kim S, Noh J, Choi H, et al. One-step deposition of photovoltaic layers using iodide terminated PbS quantum dots[J]. J. Phys. Chem. Lett. , 2014, 5(22): 4002-4007. doi:  10.1021/jz502092x
    [34]
    Shuklov I A, Toknova V F, Lizunova A A, et al. Controlled aging of PbS colloidal quantum dots under mild conditions[J]. Mater. Today Chem. , 2020, 18: 100357. doi:  10.1016/j.mtchem.2020.100357
    [35]
    ZHANG Y, Zherebetskyy D, Bronstein N D, et al. Molecular oxygen induced in-gap states in PbS quantum dots[J]. ACS Nano, 2015, 9(10): 10445-10452. doi:  10.1021/acsnano.5b04677
    [36]
    Ushakova E V, Cherevkov S A, Litvin A P, et al. Ligand-dependent morphology and optical properties of lead sulfide quantum dot superlattices[J]. J. Phys. Chem. C, 2016, 120(43): 25061-25067. doi:  10.1021/acs.jpcc.6b07734
    [37]
    Weidman M C, Beck M E, Hoffman R S, et al. Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control[J]. ACS Nano, 2014, 8(6): 6363-6371. doi:  10.1021/nn5018654
    [38]
    ZHAO H, LIANG H, Vidal F, et al. Size dependence of temperature-related optical properties of PbS and PbS/CdS core/shell quantum dots[J]. J. Phys. Chem. C, 2014, 118(35): 20585-20593. doi:  10.1021/jp503617h
    [39]
    LIU J, ZHANG H, Navarro-Pardo F, et al. Hybrid surface passivation of PbS/CdS quantum dots for efficient photoelectrochemical hydrogen generation[J]. Appl. Surf. Sci. , 2020, 530: 147252. doi:  10.1016/j.apsusc.2020.147252
    [40]
    Tsukasaki Y, Morimatsu M, Nishimura G, et al. Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum dots for in vivo fluorescence imaging in the second near-infrared window[J]. RSC Adv. , 2014, 4(77): 41164-41171. doi:  10.1039/C4RA06098A
    [41]
    Nasilowski M, Nienhaus L, Bertram S N, et al. Colloidal atomic layer deposition growth of PbS/CdS core/shell quantum dots[J]. Chem. Comm. , 2017, 53(5): 869-872.
    [42]
    Maulu A, Navarro-Arenas J, Rodriguez-Canto P J, et al. Charge transport in trap-sensitized infrared PbS quantum-dot-based photoconductors: pros and cons[J]. Nanomaterials, 2018, 8(9): 677. doi:  10.3390/nano8090677
    [43]
    CAO J, ZHU H, DENG D, et al. In vivo NIR imaging with PbS quantum dots entrapped in biodegradable micelles[J]. J. Biomed. Mater. Res. A, 2012, 100(4): 958-968.
    [44]
    DENG D, CAO J, XIA J, et al. Two-phase approach to high-quality, oil-soluble, near-infrared-emitting PbS quantum dots by wsing various water-soluble anion precursors[J]. Eur. J. Inorg. Chem. , 2011, 2011(15): 2422-2432. doi:  10.1002/ejic.201100012
    [45]
    Abel K A, Shan J, Boyer J-C, et al. Highly photoluminescent PbS nanocrystals: The beneficial effect of trioctylphosphine[J]. Chem. Mater. , 2008, 20(12): 3794-3796. doi:  10.1021/cm702564a
    [46]
    Moreels I, Justo Y, De Geyter B, et al. Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study[J]. ACS Nano, 2011, 5(3): 2004-2012. doi:  10.1021/nn103050w
    [47]
    Steckel J S, Yen B K, Oertel D C, et al. On the mechanism of lead chalcogenide nanocrystal formation[J]. J. Am. Chem. Soc. , 2006, 128(40): 13032-13033. doi:  10.1021/ja062626g
    [48]
    CAO Y, Stavrinadis A, Lasanta T, et al. The role of surface passivation for efficient and photostable PbS quantum dot solar cells[J]. Nature Energy, 2016, 1(4): 16035. doi:  10.1038/nenergy.2016.35
    [49]
    Beygi H, Sajjadi S A, Babakhani A, et al. Air exposure oxidation and photooxidation of solution-phase treated PbS quantum dot thin films and solar cells[J]. Sol. Energ. Mat. Sol. C. , 2019, 203: 110163. doi:  10.1016/j.solmat.2019.110163
    [50]
    Pichaandi J, van Veggel F C J M. Near-infrared emitting quantum dots: Recent progress on their synthesis and characterization[J]. Coord. Chem. Rev. , 2014, 263-264: 138-150. doi:  10.1016/j.ccr.2013.10.011
    [51]
    Boercker J E, Woodall D L, Cunningham P D, et al. Synthesis and characterization of PbS/ZnS core/shell nanocrystals[J]. Chem. Mater. , 2018, 30(12): 4112-4123. doi:  10.1021/acs.chemmater.8b01421
    [52]
    Speirs M J, Balazs D M, Fang H H, et al. Origin of the increased open circuit voltage in PbS–CdS core–shell quantum dot solar cells[J]. J. Mater. Chem. A, 2015, 3(4): 1450-1457. doi:  10.1039/C4TA04785K
    [53]
    WANG Z, HU Z, Kamarudin M A, et al. Enhancement of charge transport in quantum dots solar cells by N-butylamine-assisted sulfur-crosslinking of PbS quantum dots[J]. Sol. Energy, 2018, 174: 399-408. doi:  10.1016/j.solener.2018.09.026
    [54]
    Zherebetskyy D, Scheele M, Zhang Y, et al. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid[J]. Science, 2014, 344(6190): 1380-1384. doi:  10.1126/science.1252727
    [55]
    GU M, WANG Y, YANG F, et al. Stable PbS quantum dot ink for efficient solar cells by solution-phase ligand engineering[J]. J. Mater. Chem. A, 2019, 7(26): 15951-15959. doi:  10.1039/C9TA02393C
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (239) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return