Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
LI Xiaofeng, HE Yanbin, XU Chuanping, LI Jinsha, ZHANG Qindong. Choice of European Super Second Generation Image Intensifier Technology and its Further Development[J]. Infrared Technology , 2022, 44(12): 1249-1263.
Citation: LI Xiaofeng, HE Yanbin, XU Chuanping, LI Jinsha, ZHANG Qindong. Choice of European Super Second Generation Image Intensifier Technology and its Further Development[J]. Infrared Technology , 2022, 44(12): 1249-1263.

Choice of European Super Second Generation Image Intensifier Technology and its Further Development

  • Received Date: 2022-02-08
  • Rev Recd Date: 2022-03-03
  • Publish Date: 2022-12-20
  • The second-generation image intensifier adopts a Na2KSb photocathode, whereas the third-generation image intensifier adopts a GaAs photocathode. Given that GaAs photocathodes have a higher cathode sensitivity, the performance of the third-generation image intensifier is much higher than that of the second-generation image intensifier. The super second-generation image intensifier, developed on the basis of the second-generation image intensifier, has been greatly improved in terms of cathode sensitivity, and thus, its performance has also been greatly improved. Simultaneously, the gap with the third-generation image intensifier has been significantly shortened. Super second-generation image intensifiers belong to the material technology of Na2KSb, with low production cost and high cost performance compared with those of third-generation image intensifiers. Therefore, European image intensifier manufacturers chose the development roadmap for super second-generation image intensifiers. Super second- and third-generation image intensifier technologies have been developed in parallel for more than 30 years, and their performance has been greatly improved. The performance gap between super second- and third-generation image intensifiers is primarily reflected under conditions of extremely low illumination (<10−4 lx); the performance remains basically unchanged for levels above that. The performance of super-second-generation image intensifiers can still be improved. In terms of the gain, they can be improved by depositing a film of high secondary electron emission material on the inner wall of the microchannel plate. With respect to the signal-to-noise ratio, the grating window was introduced to improve the cathode sensitivity, thereby improving the signal-to-noise ratio. The resolution can be improved by inserting a semiconductor film at the output of the microchannel plate and adopting a high-definition fluorescent screen. Cathode sensitivity is a parameter of the photocathode components and not the overall performance parameter of the image intensifier. The influence of the cathode sensitivity on the overall performance of the image intensifier is embodied in the gain, signal-to-noise ratio, and equivalent background illumination. Different models are employed to distinguish between super second- and third-generation image intensifiers. These models give rise to different levels of performance. The performance parameters of super second- and third-generation image intensifiers are measured under the condition of a light source, but the spectral distribution in the actual application environment is not the same as that of the light source. The spectral responses of Na2KSb and GaAs photocathodes are different. Therefore, performance parameters such as signal-to-noise ratio and resolution of the super-second-generation and third-generation image intensifiers are not comparable.
  • loading
  • [1]
    张敬贤, 李玉丹, 金伟其. 微光与红外成像技术[M]. 北京: 北京理工大学出版社, 1995: 29-35.

    ZHANG Jingxian, LI Yudan, JIN Weiqi. Low-light-level and Infrared Imaging Technology[M]. Beijing: Beijing Institute of Technology Press, 1995: 29-35.
    [2]
    周立伟, 刘玉岩. 目标探测与识别[M]. 北京: 北京理工大学出版社, 2002: 79-100.

    ZHOU Liwei, LIU Yuyan. Object Detection and Origin[M]. Beijing: Beijing Institute of Technology Press, 2002: 79-100.
    [3]
    程宏昌, 石峰, 李周奎, 等. 微光夜视器件划代方法初探[J]. 应用光学, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm

    CHENG Hongchang, SHI Feng, LI Zhoukui, et al. Preliminary study on distinguishment method of low-level-light night vision devices[J]. Journal of Applied Optics, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm
    [4]
    郭晖, 向世明, 田民强. 微光夜视技术发展动态评述[J]. 红外技术, 2013, 35(2): 63-68. http://hwjs.nvir.cn/article/id/hwjs201302003

    GUO Hui, XIANG Shiming, TIAN Minqiang. A review of development of low light level night vision technology[J]. Infrared Technology, 2013, 35(2): 63-68. http://hwjs.nvir.cn/article/id/hwjs201302003
    [5]
    田金生. 低照度微光传感器的最新进展[J]. 红外技术, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001

    TIAN Jinsheng. New development of low level imaging sensor technology[J]. Infrared Technology, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001
    [6]
    Laprade B N, Reinhart S T, Wheeler M, et al. Low-noise-figure microchannel plate optimized for Gen III image intensification systems[C/OL]//SPIE of Electron Image Tubes and Image Intensifiers, 1990, 1243: https://doi.org/10.1117/12.19476.
    [7]
    Feller W B. Low noise and conductively cooled microchannel plates[C]//Proc. of SPIE Electron Image Tubes and Image Intensifiers, 1990, 1243:doi: 10.1117/12.19475.
    [8]
    Conti L, Barnstedt J, Hanke L, et al. MCP Detector Development for UV Space Missions[J]. Astrophysics and Space Science, 2018, 363(4): 63-71. doi:  10.1007/s10509-018-3283-4
    [9]
    周异松. 电真空成像器件及理论分析[M]. 北京: 国防工业出版社, 1989.

    ZHOU Yisong. Electric Vacuum Imaging Device and Its Theoretical Analysis[M]. Beijing: National Defense Industry Press, 1989.
    [10]
    向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 2006.

    XIANG Shiming, NI Guoqiang. The Principle of Photoelectronic Imaging Device[M]. Beijing: National Defense Industry Press, 2006.
    [11]
    常本康. 多碱光电阴极[M]. 北京: 兵器工业出版社, 2001.

    CHANG Benkang. Multi-Alkali Photocathode[M]. Beijing: Ordnance Industry Press, 2001.
    [12]
    李晓峰, 刘如彪, 赵学峰. 多碱阴极光电发射机理研究[J]. 光子学报, 2011, 40(9): 1438-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm

    LI Xiaofeng, LIU Rubiao, ZHAO Xuefeng. Photoemission mechanism of multi-alkali cathode[J]. Acta Photonica Sinica, 2011, 40(9): 1438-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm
    [13]
    李晓峰, 陆强, 李莉, 等. 超二代像增强器多碱阴极膜厚测量研究[J]. 光子学报, 2012, 41(11): 1377-1381. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201211023.htm

    LI Xiaofeng, LU Qiang, LI Li. Thickness measurement of multi-alkali photocathode[J]. Acta Photonica Sinica, 2012, 41(11): 1377-1381. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201211023.htm
    [14]
    李晓峰. 超二代像增强器多碱阴极光电发射特性研究[J]. 光子学报, 2013, 42(1): 1435-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201301001.htm

    LI Xiaofeng. Photoemission process study of multi-alkali photocathode in the super second generation image intensifier[J]. Acta Photonica Sinica, 2013, 42(1): 1435-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201301001.htm
    [15]
    李晓峰, 杨文波, 王俊. 用光致荧光研究多碱阴极光电发射机理[J]. 光子学报, 2012, 41(12): 1435-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm

    LI Xiaofeng, YANG Wenbo, WANG Jun. Photoemission mechanism of multi-alkali photocathode by photoluminescence[J]. Acta Photonica Sinica, 2012, 41(12): 1435-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm
    [16]
    常本康. GaAs光电阴极[M]. 北京: 科学出版社, 2001.

    CHANG Benkang. GaAs Photocathode[M]. Beijing: Science Press, 2001.
    [17]
    常本康. GaAs基光电阴极[M]. 北京: 科学出版社, 2017.

    CHANG Benkang. Photocathode Base on GaAs[M]. Beijing: Science Press, 2017.
    [18]
    ZHANG Yijun, CHANG Benkang, YANG Zhi, et al. Distributuion of carriers in gradient-doping transmission-mode GaAs photocathodes grown by molecular beam epitaxy[J]. Chinese Physics B, 2009, 18(10): 4541-4546. doi:  10.1088/1674-1056/18/10/074
    [19]
    ZHAO Jing, CHANG Benkang, XIONG Yajuan, et al. Influence of the antireflection, window and active layers on optical properties of exponential-doping transmission-mode GaAs photocade modules[J]. Optics Communications, 2012, 285(5): 589-593.
    [20]
    李晓峰, 张景文, 高宏凯, 等. 三代管MCP离子阻挡膜研究[J]. 光子学报, 2001, 30(12): 1496-1499. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200112014.htm

    LI Xiaofeng, ZHANG Jingwen, GAO Hongkai, et al. Ion barrier of MCP in the third generation image intensifier[J]. Acta Photonica Sinica, 2001, 30(12): 1496-1499. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200112014.htm
    [21]
    杨晓军, 李丹, 乔凯, 等. 防离子反馈微通道板表面碳污染去除的试验研究[J]. 红外技术, 2020, 42(8): 747-751. http://hwjs.nvir.cn/article/id/hwjs202008007

    YANG Xiaojun, LI Dan, QIAO Kai, et al. Experimental study of C pollution removal from microchannel plate with ion barrier film[J]. Infrared Technology, 2020, 42(8): 509-518. http://hwjs.nvir.cn/article/id/hwjs202008007
    [22]
    Jan Van Spijker. Ion barrier membrane for use in a vacuum tube using electron multiplying, an electron multiplying structure for use in a vacuum tube using electron multiplying as well as a vacuum tube using electron multiplying provided with such an electron multiplying structure[P]. U. S. : 8, 471, 444B2[P]. [2013-01-25].
    [23]
    Roaux E, Richard J C, Piaget C. Third-Generation Image Intensifier[J]. Advances in Electronics and Electron Physics, 1985, 64A: 71-75.
    [24]
    Pollehn H K. Performance and reliability of third-generation image intensifier[J]. Advances in Electronics and Electron Physics, 1985, 64A: 61-69.
    [25]
    Jacques Dupuy, Joost Schrijvers, Gerard Wolzak. The super second generation image intensifier[C/OL]//SPIE, 1989, 1072: 0014.
    [26]
    Bosch L A, Boskma L. The Performance of DEP Super Generation Image Intensifier[C]//Proc. of SPIE, 1994, 2272: 110212.
    [27]
    YAN Baojin, LIU Shulin, HENG Yuekun. Nano-oxide thin films deposited via atomic layer deposition on microchannel[J]. Nanoscale Research Letters, 2015, 10(1): 1-10.
    [28]
    丛晓庆, 邱祥彪, 孙建宁, 等. 原子层沉积法制备微通道板发射层的特性[J]. 红外与激光工程, 2016, 45(9): 0916002.

    CONG Xiaoqing, QIU Xiangbiao, SUN Jianning, et al. Properties of microchannel plate emission layer deposited by atomic layer deposition[J]. Infrared and Laser Engineering, 2016, 45(9): 1-10.
    [29]
    Nutzel G. Image intensifier for night vision device[P]. U. S. : Patent 0, 886, 095B2, [2021-01-05].
    [30]
    山东鑫茂奥耐特复合固体润滑工程技术有限公司. 一种金属表面超声波镶嵌纳米金刚石的方法[P]. 中国: CN201510283605, [2015-08-20].

    Shandong Xingmao aonaite compound lubricating oil technology company. A method of ultrasonic embedding nano diamond on metal surface[P]. China: CN201510283605, [2015-08-20].
    [31]
    李晓峰, 李廷涛, 曾进能, 等. 微通道板输入信号利用率提高研究[J]. 光子学报, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm

    LI Xiaofeng, LI Tingtao, ZENG Jinneng, et al. Study on the improvement of input signal utilization of MCP[J]. Acta Photonica Sinica, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm
    [32]
    李丹, 朱宇峰, 赵慧民, 等. MCP噪声因子特性研究[J]. 红外技术, 2017, 39(11): 1066-1070. http://hwjs.nvir.cn/article/id/hwjs201711016

    LI Dan, ZHU Yufeng, ZHAO Huimin, et al. Research on noise factor characteristic of micro-channel plate[J]. Infrared Technology, 2017, 39(11): 1066-1070. http://hwjs.nvir.cn/article/id/hwjs201711016
    [33]
    李晓峰, 常乐, 李金沙, 等. 微通道板噪声因子与工作电压关系研究[J]. 光子学报, 2020, 49(7): 0725002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202007003.htm

    LI Xiaofeng, CHANG Le, LI Jinsha, et al. Study on the relationship between noise factor and working voltage of microchannel plate[J]. Acta Photonica Sinica, 2020, 49(7): 0725002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202007003.htm
    [34]
    李晓峰, 张正君, 丛晓庆, 等. 微通道板结构参数对噪声因子的影响研究[J]. 光子学报, 2021, 50(5): 0225001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202104016.htm

    LI Xiaofeng, ZHANG Zhenjun, CONG Xiaoqing, et al. Influence of microchannel plate structure parameters on noise factor[J]. Acta Photonica Sinica, 2021, 50(5): 0225001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202104016.htm
    [35]
    刘元震, 王仲春, 董亚强. 电子发射与光电阴极[M]. 北京: 北京理工大学出版社, 1995.

    LIU Yuanzheng, WANG Zhongchun, DONG Yaqiang. Electron Emission and Photocathode[M]. Beijing: Beijing Science and Technology University Press, 1995.
    [36]
    法国甫托尼公司. 具有改善的吸收率的半透明的光电阴极[P]. 中国: CN104781903A.

    [2015-07-15]. Photonis France. Sem-transparent photocathode with improved absorption rate[P]. China: CN104781903A [2015-07-15].
    [37]
    李晓峰, 常乐, 曾进能, 等. 微通道板分辨力提高研究[J]. 光子学报, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm

    LI Xiaofeng, CHANG Le, ZENG Jinneng, et al. Study on resolution improvement of microchannel plate[J]. Acta Photonica Sinica, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm
    [38]
    邱亚峰, 严武凌, 华桑暾. 基于电子追迹算法的微光像增强器分辨力研究[J]. 光子学报, 2020, 49(12): 1223003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202012003.htm

    QIU Yafeng, YAN Wuling, HUA Sangtun. Resolution research of low-light-level image intensifier based on electronic trajectory tracking[J]. Acta Photonica Sinica, 2020, 49(12): 1223003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202012003.htm
    [39]
    李晓峰, 常乐, 赵恒, 等. 超二代与三代像增强器低照度分辨力比较研究[J]. 光子学报, 2021, 50(9): 0904003-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202109030.htm

    LI Xiaofeng, CHANG Le, ZHAO Heng, et al. Comparison of resolution between Super Gen. Ⅱ and Gen. Ⅲ image intensifier[J]. Acta Photonica Sinica, 2021, 50(9): 0904003-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202109030.htm
    [40]
    Hoenderken T H, Hagen C W, Nutzel G O, et al. Influence of the microchannel plate and anode gap parameters on the spatial resolution of an image intensifier[J]. Journal of Vaccum, Science and Technology, 2001, 19(30): 843-850.
    [41]
    Nutzel G. Fiber optic phosphor screen comprising angular filter[P]. U. S. : 8, 933, 419B2 [2015-01-13].
    [42]
    潘京生. 像增强器的迭代性能及其评价标准[J]. 红外技术, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001

    PAN Jingsheng. Image intensifier upgraded performance and evaluation standard[J]. Infrared Technology, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001
    [43]
    董煜辉, 黄丽书, 王俊, 等. 微光像增强器试验方法: WJ 2091-1992[S]. 北京: 中国标准出版社, 1992.

    DONG Yuhui, HUANG Lishu, WANG Jun, et al. Test method of image intensifier: WJ 2091-1992[S]. Beijing: Standards Press of China, 1992.
    [44]
    董煜辉, 黄丽书, 王俊, 等. 像增强器通用规范: GJB 2000A-2020 [S]. 北京: 中国标准出版社, 2020.

    DONG Yuhui, HUANG Lishu, WANG Jun, et al. General specification of image intensifier: GJB 2000A-2020[S]. Beijing: Standards Press of China, 2020.
    [45]
    李晓峰, 何雁彬, 常乐, 等. 超二代与三代像增强器性能的比较研究[J]. 红外技术, 2022, 44(8): 764-777. http://hwjs.nvir.cn/article/id/f450e48d-1281-422f-8ab5-d725f5a0ce3d

    LI Xiaofeng, HE Yanbin, CHANG Le, et al. Performance comparison between super second generation and third generation image intensifiers[J]. Infrared Technology, 2022, 44(8): 764-777. http://hwjs.nvir.cn/article/id/f450e48d-1281-422f-8ab5-d725f5a0ce3d
    [46]
    周立伟. 关于微光像增强器的品质因数[J]. 红外与激光工程, 2004, 33(4): 331-337. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200404001.htm

    ZHOU Liwei. On quality factor of low light level image intensifier[J]. Infrared and Laser Engineering, 2004, 33(4): 331-337. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200404001.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(12)

    Article Metrics

    Article views (237) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return