Volume 44 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
LIU Pengpeng, JIN Lifeng, ZHAO Hui, LI Tuotuo. Integrated Opto-mechanical-thermal Analysis and Optimization Design of a Low-Orbit Remote Sensing Camera[J]. Infrared Technology , 2022, 44(6): 614-621.
Citation: LIU Pengpeng, JIN Lifeng, ZHAO Hui, LI Tuotuo. Integrated Opto-mechanical-thermal Analysis and Optimization Design of a Low-Orbit Remote Sensing Camera[J]. Infrared Technology , 2022, 44(6): 614-621.

Integrated Opto-mechanical-thermal Analysis and Optimization Design of a Low-Orbit Remote Sensing Camera

  • Received Date: 2021-11-04
  • Rev Recd Date: 2021-11-17
  • Publish Date: 2022-06-20
  • The complex and harsh thermal environment of low-orbit satellites necessitates strict requirements for the performance of the optical-mechanical structure of remote sensing cameras. In this study, an integrated opto-mechanical-thermal simulation analysis method based on an on-orbit temperature field is proposed by using a low-orbit satellite camera as an example. Thermal desktop, MSC Patran/Nastran, and Code V are used to construct the thermal, structural finite element, and optical analysis models, respectively. The structural deformation characteristics, including the shift, tilt, and distance of each mirror in the most extreme conditions of single camera imaging time, are obtained. Changes in the MTF of the optical system are analyzed and the primary influencing factors of the system transfer function are determined. Subsequently, optimization design is performed based on the structural parameters of the primary force-taking structure. The optimization results show that the thermal characteristics of the system are optimal when the linear expansion coefficient of the primary force-taking structure ranges from 5.0e-6 to 5.5e-6, and the system transfer function meets the target requirements.
  • loading
  • [1]
    都亨, 叶宗海. 低轨道航天器空间环境手册[M]. 北京: 国防工业出版社, 1996.

    DU H, YE Z H. Space Environment Manual for LEO Spacecraft[M]. Beijing: National Defense Industry Press, 1996.
    [2]
    包立明. 红外光学系统的热特性分析[D]. 哈尔滨: 哈尔滨工程大学, 2009.

    BAO L M. Thermal Characteristic Analysis of Infrared Optical System[D]. Harbin: Dissertation of Harbin Engineering University. 2009.
    [3]
    周晓斌, 张衡, 文江华. 长波红外光学系统混合被动无热化设计[J]. 红外技术, 2021, 43(9): 836-839. http://hwjs.nvir.cn/article/id/236b81af-2c72-46e2-9cd4-883b6a6de4d2

    ZHOU X B, ZHANG H, WEN J H. LWIR optical system design by passive athermalization[J]. Infrared Technology, 2021, 43(9): 836-839. http://hwjs.nvir.cn/article/id/236b81af-2c72-46e2-9cd4-883b6a6de4d2
    [4]
    关英姿, 康立新. 长波红外非制冷光学系统设计[J]. 红外技术, 2008, 30(2): 79-82. doi:  10.3969/j.issn.1001-8891.2008.02.005

    GUAN Y Z, KANG L X. LWIR uncooled optical system design[J]. Infrared Technology, 2008, 30(2): 79-82. doi:  10.3969/j.issn.1001-8891.2008.02.005
    [5]
    赵鹏, 卢锷, 王家骐. 空间光学仪器光、机、热一体化总体设计[J]. 光学精密工程, 1996, 4(6): 17-21. doi:  10.3321/j.issn:1004-924X.1996.06.004

    ZHAO P, LU E, WANG J Q. Overall design of optical mechanical thermal integration for space optical instruments[J]. Optics and Precision Engineering, 1996, 4(6): 17-21. doi:  10.3321/j.issn:1004-924X.1996.06.004
    [6]
    杨怿, 陈时锦, 张伟. 空间光学遥感器光机热集成分析技术综述[J]. 光学技术, 2005, 31(6): 913-917. doi:  10.3321/j.issn:1002-1582.2005.06.038

    YANG Y, CHEN S J, ZHANG W. Review of optical mechanical thermal integrated analysis technology for space optical remote sensor[J]. Optical Technique, 2005, 31(6): 913-917. doi:  10.3321/j.issn:1002-1582.2005.06.038
    [7]
    傅丹鹰, 殷纯永, 乌崇德. 空间遥感器的热/结构/光学分析研究[J]. 宇航学报, 2001, 22(3): 105-110. doi:  10.3321/j.issn:1000-1328.2001.03.017

    FU D Y, YIN C Y, WU C D. A study of thermal /structural/optical analysis of a space remote sensor[J]. Journal of Astronautics, 2001, 22(3): 105-110. doi:  10.3321/j.issn:1000-1328.2001.03.017
    [8]
    傅丹鹰, 程祖璞, 蔺宇辉, 等. 空间相机光机结构导热特性分析与计算[J]. 光学技术, 1999(5): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS199905014.htm

    FU D Y, CHEN Z P, LIN Y H, et al. Thermal characteristics analysis of optical structure of space remote sensor[J]. Optical Technique, 1995(5): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS199905014.htm
    [9]
    赵振明, 于波, 苏云. 基于热平衡试验的某空间相机热光学集成分析[J]. 航天返回与遥感, 2014(4): 51-58. doi:  10.3969/j.issn.1009-8518.2014.04.007

    ZHAO Z M, YU B, SU Y. Thermal optical analysis on space camera based upon thermal balance test[J]. Spacecraft Recovery & Remote Sensing, 2014(4): 51-58. doi:  10.3969/j.issn.1009-8518.2014.04.007
    [10]
    单宝忠, 陈恩涛, 卢锷, 等. 空间光仪光机热集成分析方法[J]. 光学精密工程, 2001, 9(4): 377-381. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200104016.htm

    SHAN B Z, CHEN E T, LU E, et al. Thermal/structural/optical integrated analysis of space cameras[J]. Optics and Precision Engineering, 2001, 9(4): 377-381. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM200104016.htm
    [11]
    吴明长, 杨世模, 陈志远, 等. Hα与白光望远镜的光机热一体化分析[J]. 红外与激光工程, 2009, 38(6): 1072-1078. doi:  10.3969/j.issn.1007-2276.2009.06.027

    WU M C, YANG S M, CHEN Z Y, et al. Integrated optical-structural-thermal analysis of the Hα and white light telescope[J]. Infrared and Laser Engineering, 2009, 38(6): 1072-1078. doi:  10.3969/j.issn.1007-2276.2009.06.027
    [12]
    李其锴. Zernike多项式拟合用于低温光学镜头热集成分析[J]. 航天返回与遥感, 2010, 31(4): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201004011.htm

    LI Q K. Zernike Polynomials fitting in cryogenic optical thermal integration analysis[J]. Spacecraft Recovery & Remote Sensing, 2010, 31(4): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201004011.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (167) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return