Volume 43 Issue 3
Apr.  2021
Turn off MathJax
Article Contents
YAN Fang, ZHANG Junlin, LIU Chenghao, YU Yang. Principal Component Spectrum Analysis of Licorice Based on Terahertz Radiation[J]. Infrared Technology , 2021, 43(3): 279-283.
Citation: YAN Fang, ZHANG Junlin, LIU Chenghao, YU Yang. Principal Component Spectrum Analysis of Licorice Based on Terahertz Radiation[J]. Infrared Technology , 2021, 43(3): 279-283.

Principal Component Spectrum Analysis of Licorice Based on Terahertz Radiation

  • Received Date: 2020-04-30
  • Rev Recd Date: 2020-12-30
  • Publish Date: 2021-04-02
  • In this study, a transmission terahertz time-domain spectrum system was used to test the terahertz spectra of glycyrrhizic acid, glycyrrhetic acid, and glycyrrhizin as the main components of glycyrrhiza (licorice). The characteristics of these licorice constituents and their terahertz absorption peaks were found to be close to each other and their absorption spectra were similar. A quantum chemistry method was used to simulate the terahertz absorption spectrum of glycyrrhizic acid; this spectrum was then compared with the experimental spectrum to perform a qualitative analysis of the three elements. In this study, based on the density functional theory (DFT) and PM3 models, a single molecular configuration of glycyrrhizic acid was introduced for structural optimization and frequency calculation. The results showed that the terahertz simulated absorption peaks obtained by the two methods coincided with the experimental absorption peaks, and the terahertz simulated absorption spectrum waveforms obtained based on the DFT model were closer to those of the experimental spectrum. Finally, the characteristic absorption peak of glycyrrhizic acid at 1.655THz and the terahertz absorption coefficients of six nearby numerical points were selected, and the average value was used to perform a one-dimensional linear regression fitting with the concentration. The fitting results verified the licorice theoretically, and the acid terahertz absorption spectrum conformed to Lambert's law.
  • loading
  • [1]
    ZHANG H, LI Z, CHEN T, et al. Quantitative Determination of Auramine O by Terahertz Spectroscopy with 2DCOS-PLSR Model[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2017, 184: 335-341. doi:  10.1016/j.saa.2017.05.017
    [2]
    逯美红, 雷海英, 黄振芬, 等. 基于密度泛函理论的盐酸罂粟碱太赫兹振动光谱计算与分析[J]. 原子与分子物理学报, 2019, 36(6): 908-916. doi:  10.3969/j.issn.1000-0364.2019.06.004

    LU Meihong, LEI haiying, HUANG zhenfen, et al. Density functional theoretical calculations and analysis on terahertz vibrational spectra of papaverine hydrochloride[J]. Journal of Atomic and Molecular Physics, 2019, 36(6): 908-916. doi:  10.3969/j.issn.1000-0364.2019.06.004
    [3]
    周永军, 刘劲松, 王可嘉, 等. 基于太赫兹谱分析中药材鉴别[J]. 光谱学与光谱分析, 2014, 34(7): 1840-1843. doi:  10.3964/j.issn.1000-0593(2014)07-1840-04

    ZHOU Yongjun, LIU Jinsong, WANG Kejia, et al. Identification of Chinese Herbal Medicines Based on Terahertz Spectroscopy Analysis[J]. Spectroscopy and Spectral Analysis, 2014, 34(7): 1840-1843. doi:  10.3964/j.issn.1000-0593(2014)07-1840-04
    [4]
    刘晓庆, 姚嘉丽, 黄凡, 等. 基于太赫兹时域光谱的青霉素类药物检测研究[J]. 光学学报, 2020, 40(6): 0630001.

    LIU Xiaoqing, YAO Jiali, HUANG Fan, et al. Studuy on Detection of Penicillin Drugs Based on Terahertz Time-Domain Spectroscopy[J]. Acta Optica Sinica, 2020, 40(6): 0630001.
    [5]
    WANG Yongmei, ZHAO Zongshan, QIN Jianyuan, et al. Rapid in situ analysis of l-histidine and α-lactose in dietary supplements by fingerprint peaks using terahertz frequency-domain spectroscopy[J]. Talanta, 2020, 208: 120469. doi:  10.1016/j.talanta.2019.120469
    [6]
    刘丽萍, 王煜斐, 杨霏, 等. 基于太赫兹时域光谱技术的天麻素检测[J]. 中药材, 2018, 41(4): 909-911.

    LIU Liping, WANG Yufei, YANG fei, et al. Detection of Gastrodin Based on the Terahertz Time-domain Spectroscopy[J]. Journal of Chinese Medical Materials, 2018, 41(4): 909-911.
    [7]
    CHEN H S, DU Q H. Potential natural compounds for preventing 2019-nCOV infection[J]. Preprints Org, 2020. Doi:  10.20944/preprints202001.0358.v3.
    [8]
    申美仑, 刘广欣, 梁业飞, 等. 甘草酸和甘草次酸提取分离方法的研究进展[J]. 食品工业科技, 2019, 40(18): 326-333.

    SHEN Meilun, LIU Guangxin, LIANG Yefei, et al. Progress on Extraction and Separation of Glycyrrhizic Acid and Glycyrrhetinic Acid[J]. Science and Technology of Food Industry, 2019, 40(18): 326-333.
    [9]
    丁玲, 李宏益, 张学文. 实测甘草冠层光谱定量估算甘草酸和甘草苷含量[J]. 光谱学与光谱分析, 2014, 34(7): 1933-1937. doi:  10.3964/j.issn.1000-0593(2014)07-1933-05

    DING Ling, LI Hongyi, ZHANG Xuewen. Quantitative Estimation of Glycyrrhizic Acid and Liquirit in Contents Using In- Situ Canopy Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(7): 1933-1937. doi:  10.3964/j.issn.1000-0593(2014)07-1933-05
    [10]
    ZHANG Tianyao. Characterization of Terahertz Absorption and Dielectric Properties of Solids Based on Time Domain Spectroscopy[D]. Beijing: University of Science and Technology Beijing, 2019.
    [11]
    Duvillaret L, Garet F, Coutaz J L. A Reliable Method for Extraction of Material Parameters in Terahertz Time-Domain Spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 739-746. doi:  10.1109/2944.571775
    [12]
    Duvillaret L, Garet F, Coutaz J L. Highly Precise Determination of Optical Constants and Sample Thickness in Terahertz Time-Domain Spectroscopy[J]. Applied Optics, 1999, 38(2): 409-415. doi:  10.1364/AO.38.000409
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (345) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return