Image Processing Method for Visual Simultaneous Localization and Mapping
-
-
Abstract
Simultaneous localization and mapping(SLAM) has always been a research hotspot in the robotics field. In recent years, remarkable progress has been made in SLAM research, but few SLAM algorithms have considered the processing of dynamic scenes. Therefore, in this study, an image processing method for dynamic target processing in a visual SLAM scene is proposed. The semantic segmentation algorithm based on deep learning was introduced into the ORB_SLAM2 method and input image classification processing was accomplished while removing the feature points on the body. Pose estimation was performed based on images with eliminated feature points. Compared to ORB_SLAM2 on the TUM dataset, the absolute trajectory error and relative path error accuracy were improved by more than 90% in the dynamic scene. To ensure the accuracy of the generated map, the applicability of the map was improved.
-
-