Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
HAN Tianliang, TANG Libin, ZUO Wenbin, JI Rongbin, XIANG Jinzhong. Research Progress of Graphene Heterojunctions and Their Optoelectronic Devices[J]. Infrared Technology , 2021, 43(12): 1141-1157.
Citation: HAN Tianliang, TANG Libin, ZUO Wenbin, JI Rongbin, XIANG Jinzhong. Research Progress of Graphene Heterojunctions and Their Optoelectronic Devices[J]. Infrared Technology , 2021, 43(12): 1141-1157.

Research Progress of Graphene Heterojunctions and Their Optoelectronic Devices

  • Received Date: 2021-12-02
  • Rev Recd Date: 2021-12-12
  • Publish Date: 2021-12-20
  • Graphene is a two-dimensional material with high mobility, high thermal conductivity, high transmittance, large specific surface area, and good mechanical strength. It is widely utilized as a transparent electrode and charge-transporting layer in optoelectronic devices. However, graphene is a zero-bandgap material with inherent semi-metallic properties that limit its application in the field of semiconductor optoelectronic devices. The construction of heterojunctions has become a critical means to meet the requirements of semiconductor applications in specific industries. To date, many different graphene heterojunction structures have been reported owing to the wide selection of heterojunction materials. Based on the properties of graphene, this study describes the development and preparation methods of graphene heterojunctions and summarizes the research progress of photoelectronic devices based on graphene heterojunctions from the perspective of material preparation and device structure. Lastly, the development of graphene heterojunctions in optoelectronic devices is discussed.
  • loading
  • [1]
    LI X, SHEN R, MA S, et al. Graphene-based heterojunction photo-catalysts[J]. Applied Surface Science, 2018, 430: 53-107. doi:  10.1016/j.apsusc.2017.08.194
    [2]
    WANG J J, LIU S, WANG J, et al. Valley super current in the Kekulé graphene superlattice heterojunction[J]. Physical Review B, 2020, 101(24): 245428. doi:  10.1103/PhysRevB.101.245428
    [3]
    Kecsenovity E, Endrodi B, Toth P S, et al. Enhanced photo-electrochemical performance of cuprous oxide/Graphene nanohybrids[J]. Journal of American Chemistry Society, 2017, 139(19): 6682-6692. doi:  10.1021/jacs.7b01820
    [4]
    Tran M H, Park T, Hur J. Solution-processed ZnO: graphene quantum dot/poly-TPD heterojunction for high-performance UV photodetectors[J]. Applied Surface Science, 2021, 539: 148222. doi:  10.1016/j.apsusc.2020.148222
    [5]
    ZHENG S, SUN J, HAO J, et al. Engineering SnO2 nanorods/ethylenediamine-modified graphene heterojunctions with selective adsorption and electronic structure modulation for ultrasensitive room -temperature NO2 detection[J]. Nanotechnology, 2021, 32(15): 155505. doi:  10.1088/1361-6528/abd657
    [6]
    Kirubasankar B, Murugadoss V, LIN J, et al. In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors[J]. Nanoscale, 2018, 10(43): 20414-20425. doi:  10.1039/C8NR06345A
    [7]
    SONG T, LONG B, YIN S, et al. Designed synthesis of a porous ultrathin 2D CN@graphene@CN sandwich structure for superior photocatalytic hydrogen evolution under visible light[J]. Chemical Engineering Journal, 2021, 404: 126455. doi:  10.1016/j.cej.2020.126455
    [8]
    LI Q, QIU S, WU C, et al. Computational investigation of MgH2/graphene heterojunctions for hydrogen storage[J]. The Journal of Physical Chemistry C, 2021, 125(4): 2357-2363. doi:  10.1021/acs.jpcc.0c10714
    [9]
    Bae S, Kim H, LEE Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8): 574-578. doi:  10.1038/nnano.2010.132
    [10]
    WU J, Becerril H A, BAO Z, et al. Organic solar cells with solution-processed graphene transparent electrodes[J]. Applied Physics Letters, 2008, 92(26): 263302. doi:  10.1063/1.2924771
    [11]
    XU Y, CHENG C, DU S, et al. Contacts between two- and three-dimensional materials: Ohmic, Schottky, and p-n heterojunctions[J]. ACS Nano, 2016, 10(5): 4895-919. doi:  10.1021/acsnano.6b01842
    [12]
    Paradisanos I, McCreary K M, Adinehloo D, et al. Prominent room temperature valley polarization in WS2/graphene heterostructures grown by chemical vapor deposition[J]. Applied Physics Letters, 2020, 116: 203104. doi:  10.1063/5.0004379
    [13]
    QIAN G, CHEN J, YU T, et al. N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density[J]. Nano-Micro Letters, 2021, 13(1): 77. doi:  10.1007/s40820-021-00607-5
    [14]
    Massaro A, Pecoraro A, Muñoz-García A B, et al. First-principles study of na intercalation and diffusion mechanisms at 2D MoS2/Graphene interfaces[J]. The Journal of Physical Chemistry C, 2021, 125(4): 2276-2286. doi:  10.1021/acs.jpcc.0c10107
    [15]
    Bhaviripudi S, JIA X, Dresselhaus M S, et al. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst[J]. Nano Letters, 2010, 10(10): 4128-4133. doi:  10.1021/nl102355e
    [16]
    YI Z Y, XU J Y, XU Z H, et al. Ultrafine SnSSe/multilayer graphene nanosheet nanocomposite as a high-performance anode material for potassium-ion half/full batteries[J]. Journal of Energy Chemistry, 2021, 60: 241-248. doi:  10.1016/j.jechem.2021.01.022
    [17]
    Hasan M T, LEE B H, LIN C W, et al. Near-infrared emitting graphene quantum dots synthesized from reduced graphene oxide for in vitro/in vivo/ex vivo bioimaging applications[J]. 2D Materials, 2021, 8(3): 035013. doi:  10.1088/2053-1583/abe4e3
    [18]
    TANG Q, WANG L, MA X, et al. Rodlike SnO2/Graphene nano-composite and its application for lithium-ion batteries[J]. Materials Letters, 2021, 294: 129765. doi:  10.1016/j.matlet.2021.129765
    [19]
    YANG W, CHEN G, SHI Z, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride[J]. Nature Materials, 2013, 12(9): 792-797. doi:  10.1038/nmat3695
    [20]
    QIANG M, HUANG X M, LV K, et al. Ultrasound-enhanced preparation and photocatalytic properties of graphene-ZnO nanorod composite[J]. Separation and Purification Technology, 2021, 259: 118131. doi:  10.1016/j.seppur.2020.118131
    [21]
    Ashraf M A, LIU Z L, PENG W X, et al. Combination of sonochemical and freeze-drying methods for synthesis of Graphene/Ag-doped TiO2 nanocomposite: a strategy to boost the photocatalytic performance via well distribution of nanoparticles between graphene sheets[J]. Ceramics International, 2020, 46(6): 7446-7452. doi:  10.1016/j.ceramint.2019.11.241
    [22]
    LI X S, CAI W W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314. doi:  10.1126/science.1171245
    [23]
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi:  10.1126/science.1102896
    [24]
    Bunch J S, Van Der Zande A M, Verbridge S S, et al. Electromechanical resonators from graphene sheets[J]. Science, 2007, 315(5811): 490-493. doi:  10.1126/science.1136836
    [25]
    Kim K S, ZHAO Y, JANG H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710. doi:  10.1038/nature07719
    [26]
    YAN K, WU D, PENG H, et al. Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation[J]. Nature Communications, 2012, 3: 1280. doi:  10.1038/ncomms2286
    [27]
    LIN T Q, CHEN I W, LIU F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350(6267): 1508-1513. doi:  10.1126/science.aab3798
    [28]
    LIANG F X, WANG J Z, WANG Y, et al. Single-layer graphene/titanium oxide cubic nanorods array/FTO heterojunction for sensitive ultraviolet light detection[J]. Applied Surface Science, 2017, 426: 391-398. doi:  10.1016/j.apsusc.2017.07.051
    [29]
    ZHANG T, CHANG H, WU Y, et al. Macroscopic and direct light propulsion of bulk graphene material[J]. Nature Photonics, 2015, 9(7): 471-476. doi:  10.1038/nphoton.2015.105
    [30]
    Park J M, CAO Y, Watanabe K, et al. Tunable strongly coupled super conductivity in magic-angle twisted trilayer graphene[J]. Nature, 2021, 590(7845): 249-255. doi:  10.1038/s41586-021-03192-0
    [31]
    XIE C, WANG Y, ZHANG Z X, et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications[J]. Nano Today, 2018, 19: 41-83. doi:  10.1016/j.nantod.2018.02.009
    [32]
    Novoselov K S, JIANG D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of United Statesof America, 2005, 102(30): 10451-10453. doi:  10.1073/pnas.0502848102
    [33]
    KONG W Y, WU G A, WANG K Y, et al. Graphene-beta-Ga2O3 heterojunction for highly sensitive deep UV photodetector application[J]. Advanced Materials, 2016, 28(48): 10725-10731. doi:  10.1002/adma.201604049
    [34]
    MA P, Salamin Y, Baeuerle B, et al. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size[J]. ACS Photonics, 2019, 6: 154-161 doi:  10.1021/acsphotonics.8b01234
    [35]
    Flöry N, MA P, Salamin Y, et al. Waveguide-integrated vander Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity[J]. Nature Nanotechnology, 2020, 15(2): 118-124 doi:  10.1038/s41565-019-0602-z
    [36]
    AlAmri A M, Leung S F, Vaseem M, et al. Fully inkjet-printed photodetector using a graphene/perovskite/graphene hetero-structure[J]. IEEE Transactions On Electron Devices, 2019, 66(6): 2657-2661. doi:  10.1109/TED.2019.2911715
    [37]
    GUO J S, LI J, LIU C Y, et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm[J]. Science & Applications, 2020, 9(29): 1-11 http://doc.paperpass.com/journal/20200049gkxyyy-e.html
    [38]
    YANG F, YU K, CONG H, et al. Highly enhanced SWIR image sensors based on Ge1–xSnx/Graphene heterostructure photodetector[J]. ACS Photonics, 2019, 6(5): 1199-1206. doi:  10.1021/acsphotonics.8b01731
    [39]
    Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 2013, 499(7459): 419-425. doi:  10.1038/nature12385
    [40]
    XU L, QIU C, PENG L M, et al. Transconductance amplification in dirac-source field-effect transistors enabled by Graphene/Nanotube hereojunctions[J]. Advanced Electronic Materials, 2020, 6(5): 1901289. doi:  10.1002/aelm.201901289
    [41]
    [42]
    LONG M, LIU E, WANG P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4): 2254-2259. doi:  10.1021/acs.nanolett.5b04538
    [43]
    LI J T, LIN Y, LU J F, et al. Single mode ZnO whispering-gallery submicron cavity and graphene improved lasing performance[J]. ACS Nano, 2015, 9: 6794-6800. doi:  10.1021/acsnano.5b01319
    [44]
    JIN H, CHEN Y, ZHANG L, et al. Positive and negative photo-conductivity characteristics in CsPbBr3/Graphene hetero-junction[J]. Nanotechnology, 2021, 32(8): 085202. doi:  10.1088/1361-6528/abc850
    [45]
    LIU X, GAO J, ZHANG G, et al. Design of phosphorene/graphene heterojunctions for high and tunable interfacial thermal conductance[J]. Nanoscale, 2018, 10(42): 19854-19862. doi:  10.1039/C8NR06110F
    [46]
    Eshkalak E K, Sadeghzadeh S, Molaei F. Interfacial thermal resistance mechanism for the polyaniline (C3N)-Graphene heterostructure[J]. The Journal of Physical Chemistry C, 2020, 124(26): 14316-14326. doi:  10.1021/acs.jpcc.0c02051
    [47]
    GAO Y, LIU Q, XU B. Lattice mismatch dominant yet mechanically tunable thermal conductivity in bilayer heterostructures[J]. ACS Nano, 2016, 10(5): 5431-5439. doi:  10.1021/acsnano.6b01674
    [48]
    LIN L, DENG B, SUN J, et al. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene[J]. Chemical Review, 2018, 118(18): 9281-9343. doi:  10.1021/acs.chemrev.8b00325
    [49]
    Puneetha P, Mallem S P R, Lee Y W, et al. Strain-controlled flexible Graphene/GaN/PDMS sensors based on the piezotronic effect[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36660-36669. doi:  10.1021/acsami.0c06534
    [50]
    WANG X, LONG R. Rapid charge separation boosts solar hydrogen generation at the Graphene-MoS2 junction: time-domain ab initio analysis[J]. The Journal of Physical Chemistry Letters, 2021, 12(11): 2763-2769. doi:  10.1021/acs.jpclett.1c00322
    [51]
    HE J, HE D, WANG Y, et al. Probing effect of electric field on photocarrier transfer in graphene-WS2 van der Waals hetero-structures[J]. Optical Express, 2017, 25(3): 1949-1957. doi:  10.1364/OE.25.001949
    [52]
    YIN J, LIU L, ZANG Y, et al. Engineered tunneling layer with enhanced impact ionization for detection improvement in graphene/silicon heterojunction photodetectors[J]. Light: Science and Applications, 2021, 10(1): 113. doi:  10.1038/s41377-021-00553-2
    [53]
    TAN W C, SHI W H, CHEN Y F. A highly sensitive Graphene-organic hybrid photodetector with a piezoelectric substrate[J]. Advanced Functional Materials, 2014, 24(43): 6818-6825. doi:  10.1002/adfm.201401421
    [54]
    LIN R, ZHENG W, ZHANG D, et al. High-performance Graphene/β- Ga2O3 heterojunctiondeep-ultraviolet photodetector with hot-electron excited carrier multiplication[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22419-22426. http://www.onacademic.com/detail/journal_1000040438416110_937f.html
    [55]
    Riazimehr S, Kataria S, Gonzalez-Medina J M, et al. High responsivity and quantum efficiency of graphene/silicon photodiodes achieved by inter digitating Schottky and gated regions[J]. ACS Photonics, 2018, 6(1): 107-115. doi:  10.1021/acsphotonics.8b00951
    [56]
    ZHANG X, YAN C, HU X, et al. High performance mid-wave infrared photodetector based on graphene/black phosphorus heterojunction[J]. Materials Research Express, 2021, 8(3): 035602. doi:  10.1088/2053-1591/abed14
    [57]
    WANG H, GAO S, ZHANG F, et al. Repression of interlayer recombination by graphene generates a sensitive nanostructured 2D vdW heterostructure based photodetector[J]. Advanced Science, 2021, 8(15): 2100503. doi:  10.1002/advs.202100503
    [58]
    DANG W, PENG H, LI H, et al. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene[J]. Nano Letters, 2010, 10(8): 2870-2876. doi:  10.1021/nl100938e
    [59]
    LIN Y C, LU N, Perea-Lopez N, et al. Direct synthesis of van der Waals solids[J]. ACS Nano, 2014, 8(4): 3715-3723. doi:  10.1021/nn5003858
    [60]
    LIU Y, Weinert M, LI L. Spiral growth without dislocations: molecular beam epitaxy of the topological insulator Bi2Se3 on epitaxial graphene/SiC(0001)[J]. Physical Review Letters, 2012, 108(11): 115501. doi:  10.1103/PhysRevLett.108.115501
    [61]
    Aeschlimann S, Rossi A, Chávez-Cervantes M, et al. Direct evidence for efficient ultrafast charge separation in epitaxial WS2/graphene heterostructures[J]. Science Advances, 2020, 6: eaay0761. doi:  10.1126/sciadv.aay0761
    [62]
    HAN T, LIU H, WANG S, et al. Research on the preparation and spectral characteristics of Graphene/TMDs hetero-structures[J]. Nanoscale Research Letters, 2020, 15(1): 219. doi:  10.1186/s11671-020-03439-1
    [63]
    REN X, WANG B, HUANG Z, et al. Flexible self-powered photo- electrochemical-type photodetector based on 2D WS2-graphene heterojunction[J]. Flat Chem, 2021, 25: 100215. http://www.sciencedirect.com/science/article/pii/S2452262720300647
    [64]
    GAO S, WANG Z, WANG H, et al. Graphene/MoS2/Graphene vertical heterostructure-based broadband photodetector with high performance[J]. Advanced Materials Interfaces, 2020, 8(3): 2001730. doi:  10.1002/admi.202001730
    [65]
    ZHANG X, TIAN L, DIAOD, et al. High-response heterojunction phototransistor based on vertically grown graphene nanosheets film[J]. Carbon, 2021, 172: 720-728. doi:  10.1016/j.carbon.2020.10.054
    [66]
    LAN J C, QIAO J, SUNG W H, et al. Role of carrier-transfer in the optical nonlinearity of graphene/Bi2Te3 heterojunctions[J]. Nanoscale, 2020, 12(32): 16956-16966. doi:  10.1039/D0NR02085K
    [67]
    LI L, ZANG Y, LIN S, et al. Fabrication and characterization of SiC/Ge/ graphene heterojunction with Ge micro-nano structures[J]. Nanotechnology, 2020, 31(14): 145202. doi:  10.1088/1361-6528/ab6676
    [68]
    XU A, YANG S, LIU Z, et al. Near-infrared photodetector based on Schottky junctions of monolayer graphene/GeOI[J]. Materials Letters, 2018, 227: 17-20. doi:  10.1016/j.matlet.2018.04.107
    [69]
    TAO Z, ZHOU D, YIN H, et al. Graphene/GaAs heterojunction for highly sensitive, self-powered visible/NIR photodetectors[J]. Materials Science in Semiconductor Processing, 2020, 111: 104989. doi:  10.1016/j.mssp.2020.104989
    [70]
    HU J, LI L, WANG R, et al. Fabrication and photoelectric properties of a grapheme-silicon nanowire heterojunction on a flexible polytetra fluoroethylene substrate[J]. Materials Letters, 2020, 281: 128599. doi:  10.1016/j.matlet.2020.128599
    [71]
    Georgiou T, Jalil R, Belle B D, et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics[J]. Nature Nanotechnology, 2013, 8(2): 100-103. doi:  10.1038/nnano.2012.224
    [72]
    YOU C, DENG W, CHEN X, et al. Enhanced photodetection performance in graphene-assisted tunneling photodetector[J]. IEEE Transactions on Electron Devices, 2021, 68(4): 1702-1709. doi:  10.1109/TED.2021.3058087
    [73]
    DU W Y, YAO Z H, ZHU L P, et al. Photodoping of graphene/silicon van der Waals heterostructure observed by terahertz emission spectroscopy[J]. Applied Physics Letters, 2020, 117: 081106. doi:  10.1063/5.0020068
    [74]
    PAN R, HAN J, ZHANG X, et al. Excellent performance in vertical graphene -C60-graphene heterojunction phototransistors with a tunable bi -directionality[J]. Carbon, 2020, 162: 375-381. doi:  10.1016/j.carbon.2020.02.030
    [75]
    LIU X, GAO P, HU W, et al. Photogenerated-carrier separation and transfer in two-dimensional Janus transition metal dichalcogenides and graphene van der Waals sandwich heterojunction photovoltaic cells[J]. The Journal of Physical Chemistry Letters, 2020, 11(10): 4070-4079. doi:  10.1021/acs.jpclett.0c00706
    [76]
    FENG X, LI J, MA Y, et al. Construction of interlayer-expanded MoSe2/Nitrogen-doped graphene heterojunctions for ultra-long-cycling rechargeable aluminum storage[J]. ACS Applied Energy Materials, 2021, 4(2): 1575-1582. doi:  10.1021/acsaem.0c02797
    [77]
    SUN X, LI X, ZENG Y, et al. Improving the stability of perovskite by covering graphene on FAPbI3 surface[J]. International Journal of Energy Research, 2021, 45(7): 10808-10820. doi:  10.1002/er.6564
    [78]
    Subramanyam B V R S, Alam I, Subudhi S, et al. Enhanced stability of bulk heterojunction organic solar cells by application of few layers of electrochemically exfoliated graphene[J]. Journal of Renewable and Sustainable Energy, 2020, 12: 054101. doi:  10.1063/5.0007960
    [79]
    Borah C K, Tyagi P K, Kumar S. The prospective application of a graphene/MoS2 heterostructure in Si-HIT solar cells for higher efficiency[J]. Nanoscale Advances, 2020, 2(8): 3231-3243. doi:  10.1039/D0NA00309C
    [80]
    Lancellotti L, Bobeico E, Noce M D, et al. Graphene as non conventional transparent conductive electrode in silicon heterojunction solar cells[J]. Applied Surface Science, 2020, 525(146443): 1-8. http://www.sciencedirect.com/science/article/pii/S0169433220312009
    [81]
    WU D, GUO J, DU J, et al. Highly polarization-sensitive, broadband, self-powered photodetector based on Graphene/PdSe2/Germanium heterojunction[J]. ACS Nano, 2019, 13(9): 9907-9917. doi:  10.1021/acsnano.9b03994
    [82]
    Scagliotti M, Salvato M, De Crescenzi M, et al. Large-area, high-responsivity, fast and broadband graphene/n-Si photodetector[J]. Nanotechnology, 2021, 32(15): 155504. doi:  10.1088/1361-6528/abd789
    [83]
    XU C, DU Z, HUANG Y, et al. Amorphous-MgGaO film combined with graphene for vacuum-ultraviolet photovoltaic detector[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42681-42687.
    [84]
    Amarnath M, Gurunathan K. Highly selective CO2 gas sensor using stabilized NiO-In2O3 nanospheres coated reduced graphene oxide sensing electrodes at room temperature[J]. Journal of Alloys and Compounds, 2021, 857: 157584. doi:  10.1016/j.jallcom.2020.157584
    [85]
    WANG H, FU Y. Graphene-nanowalls/silicon hybrid heterojunction photodetectors[J]. Carbon, 2020, 162: 181-186. doi:  10.1016/j.carbon.2020.02.023
    [86]
    YANG J, TANG L, LUO W, et al. Interface engineering of a silicon/graphene heterojunction photodetector via a diamond-like carbon interlayer[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4692-4702. doi:  10.1021/acsami.0c18850
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (713) PDF downloads(316) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return