Volume 44 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
CHEN Dongqiong, YANG Wenyun, DENG Gongrong, GONG Xiaoxia, FAN Mingguo, XIAO Tingting, SHANG Falan, YU Ruiyun. Research Progress of InAsSb Infrared Detectors[J]. Infrared Technology , 2022, 44(10): 1009-1017.
Citation: CHEN Dongqiong, YANG Wenyun, DENG Gongrong, GONG Xiaoxia, FAN Mingguo, XIAO Tingting, SHANG Falan, YU Ruiyun. Research Progress of InAsSb Infrared Detectors[J]. Infrared Technology , 2022, 44(10): 1009-1017.

Research Progress of InAsSb Infrared Detectors

  • Received Date: 2021-01-22
  • Rev Recd Date: 2021-06-16
  • Publish Date: 2022-10-20
  • The cut-off wavelength of the spectral responses of the Ⅲ-Ⅴ semiconductor alloys InAs1-xSbx can be changed from 3 to 12 μm by tuning the relative amount of antimony in the alloy at room temperature. In addition, with longer carrier lifetime, higher optical absorption coefficient and higher carrier mobility can be achieved. InAsSb is a type of prospective MWIR and LWIR detector material that has potential applications. InAsSb detector can work at 150 K even at near room temperature with higher sensitivity and detectivity. Hence, it is one of the best choices for low-power, miniaturized, low-cost, highly sensitive, and fast-response MWIR and LWIR detection systems. InAsSb detectors have been widely studied and developed. In this paper, the fundamental material properties are described. Next, the status of the InAsSb infrared photodetectors domestic and abroad is introduced. Finally, the development of the InAsSb infrared detection technology is summarized and prospected.
  • loading
  • [1]
    Wooley J C, Smith B A. Solid solution in Ⅲ-Ⅴ compounds[C]//Proc. of SPIE, 1958, 72: 214-223.
    [2]
    Wooley J C, Warner J. Preparation of InAs-InSb Alloys[J]. Canadian Journal of Physics, 1964, 111: 1142-1145.
    [3]
    Wooley J C, Warner J. Optical energy-cap variation in InAs-InSb alloys[J]. Canadian Journal of Physics, 1964, 42: 1879-1885. doi:  10.1139/p64-176
    [4]
    Joel M Fastenau, Dmitri Lubyshev, QIU Yueming, et al. Sb-based IR photodetector epi wafers on 100 mm GaSb substrates manufactured by MBE[J]. Infrared Physics & Technology, 2013, 59: 158-162.
    [5]
    Denghy H Y, Hong X K, Fag W Z, et al. Microstructure characterization of InAs0.93Sb0.07 films grown by ramp-cooled liquid phase epitaxy[J]. Materials Characterization, 2007, 58(3): 307-311. doi:  10.1016/j.matchar.2006.05.009
    [6]
    Tian Z B, Schuler-Sandy T, Godoy S E, et al. High-operating-temperature MWIR detectors using type Ⅱ superlattices[C]//Proc. of SPIE, 2013, 8867: 88670S.
    [7]
    Manijeh Razeghi, Siamak Abdollahi Pour, Edward Huang, et al. High operating temperature MWIR photon detectors based on type Ⅱ InAs/GaSb superlattice[C]//Proc. of SPIE, 2011, 8012: 80122Q.
    [8]
    Smith S N, Phillips C C, Thomas R H, et al. Interband magneto-optics of InAs1-xSbx Semicond[J]. Sci. Technol. , 1992(7): 900-906.
    [9]
    Balenky G, Donetsky D, Kipshidze G, et al. Properties of unrelaxed InAs1-xSbx alloys grown on compositionally graded buffers[J]. Applied Physics Letters, 2011, 99(14): 141116. doi:  10.1063/1.3650473
    [10]
    Webster P T, Riordan N A, LIU S, et al. Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy[J]. J. Appl. Phys. , 2015, 118(24): 245706. doi:  10.1063/1.4939293
    [11]
    Suchalkin S, Ludwig J, Belenky G, et al. Electronic properties of unstrained unrelaxed narrow gap InAsxSb1−x alloys[J]. J. Phys. D. Appl. Phys. , 2016, 49(10): 105101. doi:  10.1088/0022-3727/49/10/105101
    [12]
    Osbourn G C. InAsSb strained-layer superlattices for long wavelength detector applications[J]. J. Vac. Sci. Technol, 1984, B2(2): 176-178.
    [13]
    FANG Z M, MA K Y, JAW D H, et al. Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy[J]. Journal of Applied Physics, 1990, 67: 7034. doi:  10.1063/1.345050
    [14]
    Svensson S P, Sarney W L, Hier H. Band gap of InAs1−xSbx with native lattice constant[J]. Physical Review, 2012, B86: 245205.
    [15]
    Wieder H H, Clawson A R. Photo-electronic properties of InAs0.07Sb0.93 films[J]. Thin Solid Films, 1973, 15: 217-221. doi:  10.1016/0040-6090(73)90045-X
    [16]
    Thompson A G, Woolley J C. Energy-gap variation in mixed Ⅲ-Ⅴ alloys[J]. Canadian Journal of Physics, 1967, 45(2): 255-261. doi:  10.1139/p67-026
    [17]
    Ravindra N M, Srivastava V K. Temperature dependence of the energy gap in semiconductors[J]. J. Phys. Chem. Solids, 1979, 40: 791-793. doi:  10.1016/0022-3697(79)90162-8
    [18]
    LIN Youxi, WANG Ding, Donetsky Dmitry, et al. Conduction-and valence-band energies in bulk InAs1−x Sbx and type Ⅱ InAs1−xSbx/InAs strained-layer superlattices[J]. Journal of Electronic Materials, 2013, 42(5): 1-9.
    [19]
    Alexander Soibel, Cory J Hill, Sam A Keo, et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors[J]. Applied Physics Letters, 2014, 105(2): 023512. doi:  10.1063/1.4890465
    [20]
    Craig A P, Thompson M D, Tian Z-B, et al. InAsSb-based nBn photodetectors: lattice mismatched growth on GaAs and low frequency noise performance[J]. Semiconnd. Sci. Technol., 2015, 30: 105011. doi:  10.1088/0268-1242/30/10/105011
    [21]
    Jen H R, Ma K Y, Stringefellow G B. Long range order in InAsSb[J]. Applied Physics Letters, 1989, 54: 1154-1159. doi:  10.1063/1.100746
    [22]
    Stradling R A. InSb-based materials for detectors[J]. Semicond Sci Technol., 1991, 6: C52-55. doi:  10.1088/0268-1242/6/12C/011
    [23]
    Kurtz S R, Dawson L D, Biefekl R M, et al. Ordering-induced band-gap reduction in InAs1−xSbx (x≈0.4) alloys and superlattices[J]. Physical Review B, 1992, 46(3): 1909-1912. doi:  10.1103/PhysRevB.46.1909
    [24]
    Su-Huai, Alex Zunger. InAsSb/InAs: A type-Ⅰ or a type-Ⅱ band alignment[J]. Physical Review B, 1995, 52: 12039-12044. doi:  10.1103/PhysRevB.52.12039
    [25]
    Elizabeth H Steenbergen, Oray O Cellek, Dmitri Lubyshev, et al. Study of the valence band offsets between InAs and InAs1−xSbx alloys[C]//SPIE, 2012, 8268: 82680K.
    [26]
    Webster P T, LIU S, Steenbergen E H, et al. Absorption properties of type-Ⅱ InAs/InAsSb superlattices measured by spectroscopic ellipsometry[J]. Applied Physics Letters, 2015, 106(6): 061907. doi:  10.1063/1.4908255
    [27]
    Rogalski A, Jozwikowski K. Intrinsic carrier concentration and effective mass in InAs1−xSbx[J]. Infrared Physics, 1989, 29(1): 35-42. doi:  10.1016/0020-0891(89)90006-7
    [28]
    Safa Kasap, Peter Capper. Handbook of Electronic and Photonic Materials[M]. 2nd: Springer International Publishing: New York, USA, 2017.
    [29]
    Egan R J, Chin V W L, Tansley T L. Dislocation scattering effects on electron mobility in InAsSb[J]. J. Appl. Phys, 1994, 75(5): 2473-2476. doi:  10.1063/1.356244
    [30]
    Dixit V K, Bansal B, Venkataraman V, et al. Structural, optical and electrical properties of bulk single crystals of InAs1−xSbx grown by rotatory Bridgman method[J]. Applied Physics Letters, 2002, 81(9): 1630-1632. doi:  10.1063/1.1504163
    [31]
    YEN M Y. Molecular-beam epitaxial growth and electrical properties of lattice mismatched InAs1−xSbx on (100) GaAs[J]. J. Appl Phys. , 1988, 64(6): 3306-3309. doi:  10.1063/1.342492
    [32]
    Chyi J H, Kalem S, Kumar N S, et al. Growth of InSb and InAs1−xSbx on GaAs by molecular beam epitaxy[J]. Applied Physics Letters, 1988, 53(12): 1092-1094. doi:  10.1063/1.100031
    [33]
    Tsukamoto S, Bhattacharya P, Chen Y C, et al. Transport properties of InAsxSb1−x (0≤x≤0.55) on InP grown by molecular-beam epitaxy[J]. J. Appl. Phys., 1990, 67(11): 6819-6822. doi:  10.1063/1.345071
    [34]
    Yoram Karni, Eran Avnon, Michael Ben Ezra, et al. Large format 15 μm pitch XBn detector[C]//Proc. of SPIE, 9070: 90701F.
    [35]
    D'Souza A I, Robinson E, Ionescu A C, et al. InAsSb detector & FPA data and analysis[C]//Proc. of SPIE, 2014, 9100: 91000B.
    [36]
    David Z Ting, Sam A Keo, John K Liu, et al. Barrier infrared detector research at the jet propulsion laboratory[C]//Proc. of SPIE, 2012, 8511: 851104.
    [37]
    Alexander Soibel, Cory J Hill, Sam A Keo, et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors[J]. Infrared Physics & Technology, 2015, 70: 121-124.
    [38]
    Emilia Gomółka, Małgorzata Kopytko, Olga Markowska, et al. Electrical and optical performance of midwave infrared InAsSb heterostructure detectors[J]. Opt. Eng., 2018, 57(2): 027107.
    [39]
    Kubiszyn Ł, Michalczewskib K, Benyahiab D, et al. High operating temperature LWIR and VLWIR InAs1−xSbx optically immersed photodetectors grown on GaAs substrates[J]. Infrared Physics & Technology, 2018, 97: 116-122.
    [40]
    DING Wang, Dmitry Donetsky, Gela Kipshidze, et al. Metamorphic InAsSb-based barrier photodetectors for the long wave infrared region[J]. Applied Physics Letters, 2013, 103: 0511201-05112013.
    [41]
    TONG Jinchao, Landobasa Y M Tobing, LI Qian, et al. InAs0.9Sb0.1-based hetero-p-i-n structure grown on GaSb with high mid-infrared photodetection performance at room temperature[J]. J. Mater. Sci., 2018, 53: 13010-13017. doi:  10.1007/s10853-018-2573-0
    [42]
    Bubulac L O, Andrews A M, Gertner E R, et al. Backside-illuminated InAsSb/GaSb broadband detectors[J]. Applied Physics Letters, 1980, 36(9): 734-736. doi:  10.1063/1.91649
    [43]
    Kim J D, Mohseni H, Wojkowski J S, et al. Growth of InAsSb alloys on GaAs and Si substrate for uncooled infrared photodetector applications [C]//Proc. of SPIE, 1999, 3629: 338-344.
    [44]
    Chakrabarti P, Krier A, HUANG X L, et al. Fabrication and characterization of an InAs0.96Sb0.04 photodetector for MIR application[J]. IEEE Electron Device Letters, 2004, 25(5): 283-285. doi:  10.1109/LED.2004.826979
    [45]
    TONG Jinchao, Landobasa Y M Tobing, NI Peinan, et al. High quality InAsSb-based heterostructure n-i-p mid-wavelength infrared photodiode[J]. Applied Surface Science, 2018, 427: 605-608. doi:  10.1016/j.apsusc.2017.08.177
    [46]
    Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature[J]. Applied Physics Letters, 2006, 89(15): 151109. doi:  10.1063/1.2360235
    [47]
    Klipstein P, Klin O, Seve G, et al. MWIR InAsSb XBn detectors for high operating temperatures[C]//Proc. of SPIE on Infrared Technology and Applications XXXVI, 2008, 7660: 76602Y.
    [48]
    Klipstein P, Klin O, Seve G, et al. XBn barrier detectors for high operating temperatures[C]//Proc. of SPIE on Quantum Sensing and Nanophotonics Devices Ⅶ, 2010, 7608: 7608-65.
    [49]
    Alexander Soibel, Cory J Hill, Sam A Keo, et al. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors[J]. Infrared Physics & Technology, 2015, 70: 121-124.
    [50]
    Ionescu A C, Salcido M, T J de Lyon, et al. InAsSb detectors for visible to MWIR high operating temperature applications[C]//Proc. of SPIE, 2011, 8012: 80122S.
    [51]
    Martyniuk P, Antoni R. Theoretical investigation of properties of InAsSb mid-wave infrared detectors[C]//Proc. of SPIE, 2018, 10830: 108300U.
    [52]
    Martyniuk P, Antoni R. Modeling of InAsSb/AlAsSb nBn HOT detector's performance limit[C]//Proc. of SPIE, 2013, 8704: 87041X.
    [53]
    LIN Youxi, Donetsky Dmitry, WANG Ding, et al. Development of bulk InAsSb alloy and barrier heterostryctures for long-wave infrared detectors[J]. Journal of Electronic Materials, 2015, 44(10): 3360-3366. doi:  10.1007/s11664-015-3892-4
    [54]
    Gregory Belenky, WANG Ding, LIN Youxi, et al. Metamorphic InAsSb/AlInAsSb heterostructures for optoelectronic applications[J]. Applied Physics Letters, 2013, 102: 1111081.
    [55]
    WANG Ding, Donestsky Dmitry, Kipshidze Gela, et al. Metamorphic InAsSb-based barrier photodetectors for the long wave infrared region[J]. Applied Physics Letters, 2013, 103: 0511201-0511203.
    [56]
    Kubiszyn Ł, Michalczewski K, Benyahia D, et al. High operation temperature LWIR and VLWIR InAs1-xSbx optically immersed photodetectors grown on GaAs substrate[J]. Infrared Physics & Technology, 2018, 12(25): 1-9.
    [57]
    Vinita Dahiya, Julia I Deitz, David A. Hollingshead, et al. Investigation of digital alloyed AlInSb metamorphic buffers[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materiala, Processing, Measurement, and Phenomena, 2018, 36: 02D1111-02D1117.
    [58]
    Klipstein P C, Gross Y, Aronov D, et al. Low SWaP MWIR detector based on XBn focal plane array[C]//Proc. of SPIE, 2013, 8704: 87041S.
    [59]
    高玉竹, 龚秀英. 室温InAsSb长波红外探测器的研制[J]. 光电子激光, 2010, 21(12): 1751-1754. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201012003.htm

    GAO Yuzu, GONG Xiuying, WU Guanghui, et al. Fabrication of room temperature InAsSb infrared detector with long-wavelength[J]. Journal of Optoelectronics Laser, 2010, 21(12): 1751-1754. https://www.cnki.com.cn/Article/CJFDTOTAL-GDZJ201012003.htm
    [60]
    SUN Changhong, HU Shuhong, WANG Qiwei, et al. Single crystalline InAsSb grown on (100) InSb substrate by liquid phase epitaxy[C]//Proc. of SPIE, 2012, 8419: 1-5.
    [61]
    黄亮. 基于In、As、Ga、Sb的新型红外探测材料及器件的光谱研究[D]. 上海: 中国科学院上海技术物理研究所, 2014.

    HUANG Liang. Spectroscopic Research of New Infrared Detection Materials and Devices Based on In, As, Ga, Sb[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2014.
    [62]
    宁振动. 锑化物红外探测材料的MOCVD生长及光电性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    NING Zhendong. Research on MOCVD Growth and Opto-electric Characterization of Antimonide Infrared Detection Materials[D]. Harbin: Harbin Institute of Technology, 2016.
    [63]
    WANG Tingting, XIONG Min, ZHAO Yingchun, et al. Planar mid-infrared InAsSb photodetector grown on GaAs substrate by MOCVD[J]. Applied Physics Express, 2019, 12: 122009. doi:  10.7567/1882-0786/ab507c
    [64]
    REN Yang, HAO Ruiting, LIU Sijia, et al. High Lattice match growth of InAsSb based materials by molecular beam epitaxy[J]. Chin. Phys. Lett., 2016, 33(12): 1281021-1281023.
    [65]
    ZHANG Xuan, JIA Qingxuan, SUN Ju, et al. High-performance mid-wavelength infrared detectors based on InAsSb nBn design[J]. Chin. Phys. B, 2020, 29(6): 0685011-0685014.
    [66]
    谢浩. InAsSb中波室温红外探测器材料的LPE生长及其器件[D]. 上海: 中国科学院上海技术物理研究所, 2020.

    XIE Hao. LPE Growth and Device Fabrication of InAsSb Medium Wave Infrared Detector at Room Temperature[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2020.
    [67]
    DENG Gongrong, YANG Wenyun, ZHAO Peng, et al. High operating temperature InAsSb-based mid-infrared focal plane array with a band-aligned compound barrier[J]. Appl. Phys. Lett, 2020, 113: 031104.
    [68]
    DENG Gongrong, YANG Wenyun, GONG Xiaoxia, et al. High-performance uncooled InAsSb-based pCBn mid-infrared photo-detectors[J]. Infrared Physics & Technology, 2020, 105: 1032601-1032605. http://www.cnki.com.cn/Article/CJFDTotal-ZGWL202006080.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (350) PDF downloads(186) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return