Volume 43 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
LIU Qinghai, JIANG Yun, PENG Wenlian, ZHANG Tong, DAI Xiaodong. Infrared Extinction Calculations of Smokescreen Particles by Moment Method[J]. Infrared Technology , 2021, 43(2): 138-144.
Citation: LIU Qinghai, JIANG Yun, PENG Wenlian, ZHANG Tong, DAI Xiaodong. Infrared Extinction Calculations of Smokescreen Particles by Moment Method[J]. Infrared Technology , 2021, 43(2): 138-144.

Infrared Extinction Calculations of Smokescreen Particles by Moment Method

  • Received Date: 2020-04-14
  • Rev Recd Date: 2020-09-08
  • Publish Date: 2021-02-20
  • A moment-method-based infrared extinction model of rotating smokescreen particles is applied to perform calculations entailing three graphite particles including flakes, spheres, and cylinders, mainly focusing on the relationship between extinction ability and particle parameters, such as shape, diameter, and thickness. The calculations suggest that extinction is attributed to absorption when the particle size is small and attributed to scattering when the particle size is large. Flakes exhibit the best infrared extinction performance. When flakes become thinner, their extinction abilities are enhanced. Flakes with 100 nm thickness and 1.5–2.1 μm radius exhibit outstanding extinction performance in the 1–10 μm infrared wavelength range, with an average infrared extinction coefficient as high as 5.0 m2/g.
  • loading
  • [1]
    霸书红, 陈永进, 沙育林, 等. 抗红外烟幕中固体消光材料的研究进展[J]. 含能材料, 2018, 26(4): 364-372. https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL201804018.htm

    BA Shuhong, CHEN Yongjin, SHA Yulin, et al. Research progress of solid extinction materials in anti-infrared smokescreen[J]. Chinese Journal of Energetic Materials, 2018, 26(4): 364-372. https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL201804018.htm
    [2]
    丁国振, 张占月, 周思引, 等. 空间烟幕的扩散机理及衰减性能研究[J]. 红外技术, 2014, 36(11): 914-919. doi:  10.11846/j.issn.1001_8891.201411012

    DING Guozhen, ZHANG Zhanyue, ZHOU Siyin, et al. Study on diffusion mechanism and attenuation performance of space smoke -screen[J]. Infrared Technology, 2014, 36(11): 914-919. doi:  10.11846/j.issn.1001_8891.201411012
    [3]
    陈芳芳, 耿蕊, 吕勇. 激光红外大气传输透过率模型研究[J]. 红外技术, 2015, 37(6): 496-501. http://hwjs.nvir.cn/article/id/hwjs201506012

    CHEN Fangfang, GENG Rui, LV Yong. Research on the transmittance model of laser infrared atmospheric transmission[J]. Infrared Technology, 2015, 37(6): 496-501. http://hwjs.nvir.cn/article/id/hwjs201506012
    [4]
    王红霞, 孙红辉, 宋仔标, 等. 基于蒙特卡罗方法的烟幕透过率计算与分析[J]. 红外与激光工程, 2013, 41(5): 1200-1205. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201205017.htm

    WANG Hongxia, SUN Honghui, SONG Zibiao, et al. Numerical calculation and analysis of transmittance of smoke screen based on Monte Carlo method[J]. Infrared and Laser Engineering, 2013, 41(5): 1200-1205. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201205017.htm
    [5]
    胡以华, 黄宝锟, 顾有林, 等. 生物颗粒远红外波段平均消光效率因子模型构建[J]. 红外与激光工程, 2018, 47(10): 1004003. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201810017.htm

    HU Yihua, HUANG Baokun, GU Youlin, et al. Model construction of biological particles average extinction efficiency factor in far infrared band[J]. Infrared and Laser Engineering, 2018, 47(10): 1004003. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201810017.htm
    [6]
    Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles[M]. New York: John Wiley & Sons, 1983.
    [7]
    许丽生, 陈洪滨, 丁继烈. 非球形粒子光散射计算研究的进展综述[J]. 地球科学进展, 2014, 29(8): 903-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201408004.htm

    XU Lisheng, CHEN Hongbin, DING Jilie. An overview of the advances in computational studies on light scattering by nonspherical particles[J]. Advances in Earth Science, 2014, 29(8): 903-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201408004.htm
    [8]
    高太长, 胡帅, 李浩. 气溶胶光散射数值模拟的研究现状及进展[J]. 气象科学, 2017, 37(5): 598-609. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201705004.htm

    GAO Taichang, HU Shuai, LI Hao. Actuality and prospect of aerosol scattering numerical simulation techniques[J]. Journal of the Meteorological Sciences, 2017, 37(5): 598-609. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201705004.htm
    [9]
    刘清海, 刘海锋, 代晓东, 等. 石墨烯烟幕红外干扰性能研究[J]. 红外技术, 2019, 41(11): 1071-1076. http://www.cnki.com.cn/Article/CJFDTotal-HWJS201911012.htm

    LIU Qinghai, LIU Haifeng, DAI Xiaodong, et al. Infrared interfering performance of graphene smoke screen[J]. Infrared Technology, 2019, 41(11): 1071-1076. http://www.cnki.com.cn/Article/CJFDTotal-HWJS201911012.htm
    [10]
    郭晓铛, 乔小晶, 李旺昌, 等. 铁磁体/碳复合材料多频干扰性能[J]. 红外与激光工程, 2016, 47(10): 0321001. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201603030.htm

    GUO Xiaodang, QIAO Xiaojing, LI Wangchang, et al. Multi-frequency jamming of ferromagnet/carbon composite[J]. Infrared and Laser Engineering, 2016, 47(10): 0321001. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201603030.htm
    [11]
    Mishchenko M I, Travis L D, Lacis A A. Scattering, Absorption, and Emission of Light by Small Particles[M]. New York: Cambridge, 2002.
    [12]
    Mautz J, Harrington R. Electromagnetic scattering from a homogeneous body of revolution[J]. Archivfuer Elektronik und Uebertragungstechnik, 1979, 33: 71-80. http://adsabs.harvard.edu/abs/1979ArElU..33...71M
    [13]
    Mautz J, Harrington R. H-field, E-field, and combined-field solutions for conducting bodies of revolution[J]. Archivfuer Elektronik und Uebertragungstechnik, 1978, 32: 157-164. http://adsabs.harvard.edu/abs/1978ArElU..32..157M
    [14]
    Mautz J, Harrington R. A combined-source solution for radiation and scattering from a perfectly conducting body[J]. IEEE Trans. on AP, 1979, 27(4): 445-454. doi:  10.1109/TAP.1979.1142115
    [15]
    Davidson D, Mc Namara D. Predicting radiation patterns from aperture antennas on structures using the method of moments body of revolution technique[C]IEEE Symposium on Antennas and Propagation, 1987, 25: 25-30.
    [16]
    Glisson A W, Wilton D R. Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces[J]. IEEE Trans. on AP, 1980, 28: 593-603. doi:  10.1109/TAP.1980.1142390
    [17]
    Medgyesi-Mitschg L N, Putnam J M. Electromagnetic scattering from axially inhomogeneous bodies of revolution[J]. IEEE Trans. on Apropag, 1984, 32: 797-806. doi:  10.1109/TAP.1984.1143430
    [18]
    Aleksandra B Djurišić, E Herbert Li. Optical properties of graphite[J]. Journal of Applied Physics, 1999, 85(10): 7404-7410. doi:  10.1063/1.369370
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (250) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return