Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
JING Weiguo, WANG Hongpei, LUAN Guangqi, WANG Chenhui. Reconnaissance Capability of Low-Light Level Equipment Based on Imaging Contrast[J]. Infrared Technology , 2022, 44(4): 389-396.
Citation: JING Weiguo, WANG Hongpei, LUAN Guangqi, WANG Chenhui. Reconnaissance Capability of Low-Light Level Equipment Based on Imaging Contrast[J]. Infrared Technology , 2022, 44(4): 389-396.

Reconnaissance Capability of Low-Light Level Equipment Based on Imaging Contrast

  • Received Date: 2022-01-06
  • Rev Recd Date: 2022-02-14
  • Publish Date: 2022-04-20
  • There are several variable parameters in the existing low light level sight range model which makes it difficult to predict the target reconnaissance ability in an actual complex nighttime environment. Based on the Ross equation, atmospheric optical transmission and long-distance reconnaissance image contrast model, this study proposes a method to predict the reconnaissance ability of specific targets using a standard target contrast test, and the standard target contrast curve under specific night light environment is provided. With the contrast curve and minimum resolvable contrast (MRC) model, the reconnaissance distance of tank and truck targets is predicted. After comparing the predicted value with the actual test value, the error is within 16.2%, which verifies the feasibility of using standard target contrast to predict the target reconnaissance distance. The results have value in guiding the analysis and evaluation of low light level equipment reconnaissance capability under different backgrounds and environments.
  • loading
  • [1]
    田金生. 微光像传感器技术的最新进展[J]. 红外技术, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001

    TIAN Jinsheng. The latest development of low light level image sensor technology[J]. Infrared Technology, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001
    [2]
    艾克聪. 微光夜视技术的现状和发展设想[J]. 应用光学, 1995, 16(3): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX503.004.htm

    AI Kecong. Present situation and development of low light level night vision technology[J]. Applied Optics, 1995, 16(3): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX503.004.htm
    [3]
    金伟其, 高稚允, 苏学刚, 等. 光电成像系统与人眼视觉的匹配问题[J]. 红外技术, 2000, 22(5): 40-44. doi:  10.3969/j.issn.1001-8891.2000.05.009

    JIN Weiqi, GAO Zhirun, SU Xuegang, et al. Matching between photoelectric imaging system and human vision[J]. Infrared Technology, 2000, 22(5): 40-44. doi:  10.3969/j.issn.1001-8891.2000.05.009
    [4]
    金伟其, 张琴, 王霞, 等. 一种改进的直视型微光夜视系统视距模型[J]. 光子学报, 2020, 49(4): 0411001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202004007.htm

    JIN Weiqi, ZHANG Qin, WANG Xia, et al. An improved apparent distance model for direct-view low-light-level night vision system[J]. Acta Photonica Sinica, 2020, 49(4): 0411001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202004007.htm
    [5]
    白廷柱, 金伟其. 光电成像原理与技术[M]. 北京: 北京理工大学出版社, 2006.

    BAI Tingzhu, JIN Weiqi. Principle and Technology of Photoelectric Imaging[M]. Beijing: Beijing Institute of Technology Press, 2006.
    [6]
    ROSE A. The sensitivity performance of the human eye on an absolute scale[J]. Journal of the Optical Society of America, 1948, 38(2): 196-208. doi:  10.1364/JOSA.38.000196
    [7]
    DEVRIES H L. The quantum character of light and its bearing upon the threshold of vision[J]. Physica, 1954, 7(7): 553-556.
    [8]
    COLTMAN J W, ANDERSON A E. Noise limitations to resolving power in electronic imaging[J]. Proceedings of the IRE, 1960, 48(5): 858-865. doi:  10.1109/JRPROC.1960.287622
    [9]
    RICHARDS E A. Limitations in optical imaging devices at low light levels[J]. Applied Optics, 1969, 8(10): 1999-2005. doi:  10.1364/AO.8.001999
    [10]
    SCHAGEN P. Electronic aids to night vision[J]. Electronics & Power, 1975, 21(7): 437-439.
    [11]
    SCHNITZLER A D. Visual Systems for Night Vision[M]. US: Springer 1971.
    [12]
    ROSELLF A, WILLSON R H. Basics of detection, recognition and identification in electro-optical formed imagery[C]//Solving Problems in Security, Surveillance and Law Enforcement with Optical Instrumentation, 1973: DOI: 10.1117/12.953625.
    [13]
    RIEHARD J C, LAMPORT D L, ROAUX E, et al. Performance of passive night vision systems using image intensifier tubes[J]. Acta Electron, 1977, 20(4): 353-368.
    [14]
    邹异松. 成象器件的图象探测特性[J]. 北京工业学院学报, 1982(1): 17-28. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG198201001.htm

    ZOU Yisong. Image detection characteristics of imaging devices[J]. Journal of Beijing Institute of Technology, 1982(1): 17-28. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG198201001.htm
    [15]
    艾克聪, 周立伟, 曾桂林, 等. 微光夜视系统新的阈值探测理论和视距探测方程研究[J]. 应用光学, 2002, 23(5): 1-6.0411001-9 doi:  10.3969/j.issn.1002-2082.2002.05.001

    AI Kecong, ZHOU Liwei, ZENG Guilin, et al. Research on new threshold detection theory and apparent distance equation of the low-light night vision system[J]. Journal of Applied Optics, 2002, 23(5): 1-6. doi:  10.3969/j.issn.1002-2082.2002.05.001
    [16]
    刘松涛, 王博林, 王龙涛. 微光夜视仪的作用距离估算与仿真[J]. 激光与红外, 2016, 46(4): 462-465. doi:  10.3969/j.issn.1001-5078.2016.04.016

    LIU Songtao, WANG Bolin, WANG Longtao. Estimation and simulation of operation range for low-light-level night vision device[J]. Laser & Infrared, 2016, 46(4): 462-465. doi:  10.3969/j.issn.1001-5078.2016.04.016
    [17]
    刘磊, 常本康. 微光成像系统视距理论公式的修正[J]. 光学学报, 2003, 23(60): 761-765. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200306024.htm

    LIU Lei, CHANG Benkang. Correction of the theoretical formula of low-light imaging system[J]. Acta Optica Sinica, 2003, 23(60): 761-765. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200306024.htm
    [18]
    刘磊, 李元, 钱芸生, 等. 用于微光夜视系统性能评估的新方法[J]. 应用光学, 2006, 27(6): 546-551. doi:  10.3969/j.issn.1002-2082.2006.06.018

    LIU Lei, LI Yuan, QIAN Yunsheng, et al. New method for visual range evaluation and scene simulation of low-light level(LLL) night vision systems[J]. Journal of Applied Optics, 2006, 27(6): 546-551. doi:  10.3969/j.issn.1002-2082.2006.06.018
    [19]
    LIU Qiankun, LIU Lei, DENG Yubin, et al. Apparent distance theory revision for low-light-level night vision system based on noise factor[J]. Optical and Quantum Electronics, 2017, 49(7): 249-264. doi:  10.1007/s11082-017-1087-3
    [20]
    刘建斌, 吴健. 空间目标的光散射研究[J]. 宇航学报, 2006, 27(4): 802-805. doi:  10.3321/j.issn:1000-1328.2006.04.048

    LIU Jianbin, WU Jian. Study on light scattering of space targets[J]. Journal of Astronautics, 2006, 27(4): 802-805. doi:  10.3321/j.issn:1000-1328.2006.04.048
    [21]
    周立伟. 目标探测与识别[M]. 北京: 北京理工大学出版社, 2002.

    ZHOU Liwei. Target Detection and Recognition[M]. Beijing: Beijing Institute of Technology Press, 2002.
    [22]
    金伟其, 高绍姝, 王吉晖. 基于光电成像系统最小可分辨对比度的扩展源目标作用距离模型[J]. 光学学报, 2009, 29(6): 1552-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200906025.htm

    JIN Weiqi, GAO Shaoshu, WANG Jihui. Extended source target range model based on minimum resolvable contrast of photoelectric imaging system[J]. Acta Optica Sinica, 2009, 29(6): 1552-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200906025.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (145) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return