Volume 44 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
PENG Wudi, LIU Lixi, CHEN Zhili, TANG Jin, CHEN Lin, HU Tianyou, WANG Haowen. Oil Fire Radiation Calculation Based on a Statistical Narrow-Band Model[J]. Infrared Technology , 2022, 44(3): 217-224.
Citation: PENG Wudi, LIU Lixi, CHEN Zhili, TANG Jin, CHEN Lin, HU Tianyou, WANG Haowen. Oil Fire Radiation Calculation Based on a Statistical Narrow-Band Model[J]. Infrared Technology , 2022, 44(3): 217-224.

Oil Fire Radiation Calculation Based on a Statistical Narrow-Band Model

  • Received Date: 2021-03-08
  • Rev Recd Date: 2021-04-25
  • Publish Date: 2022-03-20
  • In recent years, oil fire pollution accidents have occurred frequently and caused significant harm. It has become important to study oil fire accidents by extracting fire information through the analysis of spectral characteristics. Many domestic and foreign scholars have established a variety of gas radiation and carbon black radiation models to study fuel combustion; however, few scholars have directly modeled flame spectra to analyze and extract spectral characteristic information on combustion pollution products. In this study, a test platform for the flame spectra of oil was constructed, and the flame spectra of alcohol, 92 gasoline, 95 gasoline, and 0 diesel were measured at a single scale, as was the flame spectra of 0 diesel at multiple scales. The experimental results demonstrate that the flame spectra of the three oils are similar and the radiance increases nonlinearly with an increase in scale. Based on the statistical narrow-band method, a spectral radiation model for the oil flame was established, and a curve fitting degree of 0.895 was obtained based on experimental data. The spectral radiation model can be used to calculate the average radiance and transmittance of oil flames on a large scale, as well as the average transmittance at different flue gas concentrations, which can be helpful for remote fire pollution detection and pollutant concentration inversion.
  • loading
  • [1]
    周锋, 阮桢. 石油化工储罐火灾事故统计与分析[C]//2016中国消防协会科学技术年会论文集, 2016: 30-32.

    ZHOU Feng, RUAN Zhen. Statistics and analysis of fire accidents in petrochemical storage tanks[C]//Proceedings of 2016 China Fire Protection Association Science and Technology Annual Meeting, 2016: 30-32.
    [2]
    刘洪涛, 陈志莉, 刘强, 等. 基于小波分解的油料火焰光谱特性分析研究[J]. 光学学报, 2016, 36(1): 320-326. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201601040.htm

    LIU Hongtao, CHEN Zhili, LIU Qiang, et al. Analysis of oil flame spectrum characteristics based on wavelet decomposition[J]. Acta Optica Sinica, 2016, 36(1): 320-326. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201601040.htm
    [3]
    Wakatsuki K, Fuss S P, Hamins A, et al. A technique for extrapolating absorption coefficient measurements to high temperatures[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1565-1573. doi:  10.1016/j.proci.2004.08.078
    [4]
    RAJ P K. LNG pool fire spectral data and calculation of emission power[J]. Journal of Hazardous Materials, 2007, 140(3): 720-729.
    [5]
    RAJ P K. Large hydrocarbon fuel pool fires: Physical characteristics and thermal emission variations with height[J]. Journal of Hazardous Materials, 2007, 140(1): 280-292. https://www.sciencedirect.com/science/article/abs/pii/S0304389406009885
    [6]
    Maoult Y L, Sentenac T, Orteu J J, et al. Fire Detection: A New Approach Based on a Low Cost CCD Camera in the Near Infrared[J]. Process Safety and Environmental Protection, 2007, 85(3): 193-206. doi:  10.1205/psep06035
    [7]
    徐建楠, 蒋新生, 张昌华, 等. 不同工况下汽油蒸气爆炸着火延迟与机理分析[J]. 化工学报, 2019, 70(1): 398-407. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201901045.htm

    XU Jiannan, JIANG Xinshen, ZHANG C H, et al. The ignition delay and mechanism analysis of gasoline vapor explosion under different working conditions[J]. CIESC Journal, 2019, 70(1): 398-407. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201901045.htm
    [8]
    Boudreau S, Levasseur S, Perilla C, et al. Chemical detection with hyperspectral lidar using dual frequency combs[J]. Optics Express, 2013, 21(6): 7411-8. doi:  10.1364/OE.21.007411
    [9]
    Klassen M S, Sutula J A, Holton M M, et al. Transmission throughand breakage of single and multi-pane glazing due to radiant exposure: state of research[J]. Fire Technology, 2010, 46(4): 821-832. doi:  10.1007/s10694-010-0150-4
    [10]
    Grosshandler W L. The effect of soot on pyrometric measurements of coal particle temperature[J]. Combustion & Flame, 1982, 55(1): 59-71. https://www.sciencedirect.com/science/article/pii/0010218084901494
    [11]
    Rothman L S, Gordon I E, Barber R J, et al. HITEMP, the high-temperature molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2010, 111(15): 2139-2150. https://www.sciencedirect.com/science/article/pii/S002240731000169X
    [12]
    Malkmus W. Random lorentz band model with exponential-tailed S-1 line intensity distribution function[J]. Optical Society of America, 1967, 57(3): 323-329. doi:  10.1364/JOSA.57.000323
    [13]
    CHU H Q, LIU F S, ZHOU H, Calculations of gas thermal radiation transfer in one dimensional planar enclosure using LBL and SNB models[J]. Heat Mass Transfer, 2011, 54(21): 4736-4745.
    [14]
    Hamins A, Anderson D T, Miller J H. Mechanistic studies of toluene destruction in diffusion flames[J]. Combustion Science & Technology, 1990, 71(4-6): 175-195.
    [15]
    Gordon I E, Rothman L S, Hill C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 130(11): 4-50. https://www.sciencedirect.com/science/article/pii/S0022407317301073
    [16]
    Elsasser W M. Heat Transfer by Infrared Radiation in the Atmosphere[M]. Harvard: Harvard University Press, 1943: 43-45.
    [17]
    Goody R M. A statistical model for water vapour absorption[J]. Quarterly Journal of the Royal Meteorological Society, 1952, 78(336): 165-169. doi:  10.1002/qj.49707833604
    [18]
    Soufiani A, Taine J. High temperature gas radiative property parameters of statistical narrow band model for H2O, CO2 and CO and correlated k model for H2O and CO2[J]. Heat Mass Transfer, 1997, 40(4): 987–991. doi:  10.1016/0017-9310(96)00129-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (143) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return