2022 Vol. 44, No. 2

Survey & Review
Research Progress of Quantum Dots Synthesis and Their Photoelectric Functional Films
ZHONG Hefu, TANG Libin, YU Lijing, ZUO Wenbin
2022, 44(2): 103-114.
Abstract HTML (72) PDF(122)
Abstract:
Quantum dots (QDs), which are also known as semiconductor nanocrystals, have been widely applied in the design and development of photoelectric detectors and solar cells because of their low manufacturing cost and unique optical properties. The synthesis of QDs is an important component in the preparation of photodetectors and solar cells. In this review, several different QD synthesis technologies, various QD-based photodetectors and solar cells are summarized, and the advantages and disadvantages of different types of QD films are compared. Lastly, we investigated the development of QD films.
Materials & Devices
Characterization and Analysis of Interface Characteristics of InAs/GaSb Type-II Superlattice Materials
REN Yang, QIN Gang, LI Junbin, YANG Jin, LI Yanhui, YANG Chunzhang, KONG Jincheng
2022, 44(2): 115-122.
Abstract HTML (49) PDF(61)
Abstract:
This article systematically introduces the testing and analysis methods used by domestic and foreign research institutions to study the superlattice interface. To evaluate the quality of the superlattice interface, the InAs/GaSb type-II superlattice interface type, interface roughness, abruptness, and other characteristics can be tested and analyzed using Raman spectroscopy, high-resolution transmission electron microscopy, a scanning tunneling microscope, secondary ion mass spectroscopy, and X-ray photoelectron spectroscopy. Photoluminescence spectroscopy, high-resolution X-ray diffraction, Hall measurements, and absorption spectroscopy can be used to study the effect of the superlattice interface quality on the energy band, crystal quality, and optical properties of superlattice materials.
Comparative Study on Readout Circuit for Graphene and Typical Photoconductors Photodetectors
HAN Qin, GAO Kaicong, REN Siwei, WU Jun, JIANG Ying, ZHAO Ruiguang, SHEN Jun
2022, 44(2): 123-128.
Abstract HTML (26) PDF(49)
Abstract:
Graphene-based photodetectors have the advantages of good compatibility and wide-band response, and their readout circuits are similar to traditional detectors such as bolometers. However, graphene photodetectors are generally photon types whose responsivity, power consumption, and integration time are significantly different. Here, the readout circuits of pure graphene, graphene-lead sulfide heterostructure, lead sulfide, and typical bolometer combined with the measured device parameters are studied. Simulation results show that because of its high responsivity, when the same output voltage is achieved, the integration time of the graphene-lead sulfide heterostructure detector is the lowest, which is more conducive to high-frame-rate applications. However, compared with the bolometer, the graphene detector has a higher power consumption, and the analysis shows that a reasonable device structure design can effectively reduce the power consumption. This study can provide a reference in the selection of the readout circuit and parameter design of a new type of two-dimensional material photodetector.
As Ion Implantation Technology for LWIR HgCdTe Infrared Detector
XIONG Bojun, LI Lihua, YANG Chaowei, LI Xiongjun, ZHAO Peng, WAN Zhiyuan
2022, 44(2): 129-133.
Abstract HTML (52) PDF(89)
Abstract:
The p-on-n HgCdTe infrared detector has advantages of long minority carrier life, low dark current, high R0A product, and is an important device structure in the development of high-temperature detectors along with long wavelength infrared (LWIR) and very LWIR(VLWIR) detectors. However, there are few local reports on arsenic-implanted doped p-on-n long-wave HgCdTe detectors. To meet the urgent application requirements of high-performance long-wave detectors in the military and aerospace fields, studies have focused on long-wavelength p-on-n HgCdTe infrared detector annealing technology for As ion implantation. Secondary ion mass spectrometry(SIMS) was used to analyze the distribution of As ion concentration after implantation and annealing, and a semiconductor parameter tester was used to characterize the I-V characteristics of the pn junction. The results show that under mercury-rich conditions at 430℃ for 0.5 h and at 240℃ for 20 h, the As was activated. Further, the As implanted long-wavelength 15-μm 640×512 p-on-n HgCdTe infrared focal plane detector was successfully fabricated, and the operable pixel factor of the detector was greater than 99.7%. This research is of great significance for the fabrication of LWIR and VLWIR mercury cadmium telluride p-on-n focal plane detectors.
Systems & Designs
Calculation of Temperature and Radiation Characteristics of Midcourse Ballistic Missiles
LI Xiang, LI Jindong, WANG Yuying, SUN Xiaofeng, YANG Dong
2022, 44(2): 134-139.
Abstract HTML (339) PDF(110)
Abstract:
The radiation characteristics of mid-course ballistic missiles are the basis and premise for their detection and identification. Radiation characteristics have an important guiding meaning in the selection of detection methods, sensor design, etc. Taking a ballistic missile with infrared stealth technology as the research object, and considering the factors of stealth coatings and the influence of earth shadows, the temperature and its variation trend are calculated using the finite-volume method. Combining the radiation of the missile with solar and earth radiation spectra, the radiation characteristics are presented within for missile wavelengths ranging from 0–15 μm. The relationship between the surface temperature and the radiation intensity of the missile is studied. The detection differences of different surface coatings under illumination and shadow conditions are discussed. The results show that the optical parameters of the coating have a greater influence on the radiation characteristics of the missile than the surface temperature. There is disagreement between the penetration effectiveness in the visible and infrared wavebands. Visible and infrared detection methods can be used simultaneously to improve detection capability.
Design of Double Telecentric Lens Using Machine Vision System
CAO Yiqing
2022, 44(2): 140-144.
Abstract HTML (88) PDF(82)
Abstract:
This study presents a design idea for a double telecentric lens for machine vision systems to meet the industry requirements for the on-line inspection of machine vision. First, according to the design index of the system, a suitable initial structure is determined, and based on the imaging principle and aberration analysis method of the double telecentric lens, the aberration of the lens is then optimized repeatedly using the optical design software Zemax. Finally, a double telecentric lens with high resolution, low distortion, and small telecentricity is obtained. The lens system consists of 10 refraction lenses with an operating wavelength range 400–700 nm, a working object distance of 100 mm, distortion of less than 0.07%, maximum telecentricity of 0.06°, and modulation transfer function value greater than 0.5 at a Nyquist frequency of 77 lp/mm. The aberration correction is good and meets the design requirements of the system.
Structural Improvement Design of an Infrared Thermal Imager
GAO Youtao
2022, 44(2): 145-150.
Abstract HTML (35) PDF(90)
Abstract:
The mechanical environment reliability of infrared thermal imagers is one of the most important indices in its structural design. To ensure that the infrared thermal imager can withstand the vibration environment during operation, a fault closed loop of an infrared thermal imager is used as an example to develop research on the fault mechanism and structure improvement design. The finite-element model of the infrared thermal imager is modified based on the dynamic test. The fault mechanism is deduced by combining the finite-element method and the fatigue failure theory under random vibration. According to the analysis results, the structure was improved and verified using the fatigue failure theory and random vibration test. The results indicate that the fault location is accurate and the structural improvement is effective. The analysis method proposed in this paper is expected to provide a reference for the fault location and structural improvement of a single sensor.
Calculation of Infrared Scattering Transmittance of Aerosol
WU Huiyang, WANG Zeyang, HUANG Xinjun, ZHANG Yan, SHI Xiaonan, ZHANG Yunfei
2022, 44(2): 151-156.
Abstract HTML (21) PDF(47)
Abstract:
Atmospheric scattering is one of the factors influencing the energy attenuation of infrared radiation in the atmosphere. Considering the variation in the aerosol density with altitude, the calculation method of atmospheric scattering transmittance is developed for the horizontal homogeneous transmission and oblique transmission integrating the atmospheric visibility parameters. In the case of horizontal homogeneous transmission, the average transmission method of atmospheric aerosol scattering transmission in the mid-long wave band is calculated by performing conventional integration. Compared with the result of the engineering calculation formula using the median wavelength, the engineering calculation formula is shown to have sufficient engineering accuracy. For the case of slope propagation, a slope engineering calculation formula for infrared atmospheric aerosol scattering transmittance was obtained by integrating the altitude. The effects of the altitude, waveband, and visibility on the atmospheric scattering transmittance are calculated and analyzed. This study has great significance for the establishment of an independent accurate atmospheric transmittance calculation model, the downward-looking detection performance of computer-borne detectors for infrared targets, and provides a good understanding of the factors influencing atmospheric aerosol scattering transmittance.
Design and Simulation of Thermopile Laser Power Meter
LEI Cheng, WU Xuezhan, LIANG Ting, MA Ye, GUANG Yihao, DONG Zhichao, LI Qiang, QI Lei
2022, 44(2): 157-162.
Abstract HTML (75) PDF(36)
Abstract:
To address the need to test the output power of ultraviolet, visible, and infrared lasers, this study proposes a thermopile laser power meter composed of a heat transfer body, an absorption layer, an insulating layer, and a thermocouple. Combining the thermal effect and Seebeck effect theory, Solidworks 3D design software is used to build models of different key structure sizes, and a thermoelectric coupling simulation analysis model is established using ANSYS Workbench simulation software to analyze the influence of key structure size parameters on the output voltage and temperature distribution. The thermopile laser power meter is designed using mechanical processing, coating, and sandblasting, and the package structure and circuit compensation are designed to amplify and calibrate the output voltage. The results show that the key factors affecting the output voltage of the laser power meter are the thickness of the heat transfer body, the number of thermal couples, and the length of the thermal couple.
Control of Focusing System of Stepper Motor Based on Dynamic Programming
KUANG Xianyan, ZHOU Yalong, WU Yugang
2022, 44(2): 163-169.
Abstract HTML (41) PDF(35)
Abstract:
To solve the problems of slow focusing in a stepper motor lens, caused by a stepper motor used for low-frequency driving, and the lack of focus, caused by an out-of-step stepper motor used for high-frequency driving, the open-loop control algorithm of a stepper motor for an STM lens is designed by analyzing the motor's acceleration and deceleration action and its acceleration-deceleration curves during the focusing process. Based on the constant speed of the motor during the unit control period, the algorithm transforms the position control problem of the stepper motor into a pulse output problem in the unit control cycle, which realizes a skillful combination of speed control and position control. The control circuits are built for the STM lens focusing motor. The experimental results show that this algorithm can improve the open-loop control precision of the stepper motor, effectively suppressing the out-of-focus problem caused by overshoot and out-of-step stepper motors.
Image Processing & Simulation
Infrared and Visible Image Fusion Using Attention- Based Generative Adversarial Networks
WU Yuanyuan, WANG Zhishe, WANG Junyao, SHAO Wenyu, CHEN Yanlin
2022, 44(2): 170-178.
Abstract HTML (45) PDF(56)
Abstract:
At present, deep learning-based fusion methods rely only on convolutional kernels to extract local features, but the limitations of single-scale networks, convolutional kernel size, and network depth cannot provide a sufficient number of multi-scale and global image characteristics. Therefore, here we propose an infrared and visible image fusion method using attention-based generative adversarial networks. This study uses a generator consisting of an encoder and decoder, and two discriminators. The multi-scale module and channel self-attention mechanism are designed in the encoder, which can effectively extract multi-scale features and establish the dependency between the long ranges of feature channels, thus enhancing the global characteristics of multi-scale features. In addition, two discriminators are constructed to establish an adversarial relationship between the fused image and the source images to preserve more detailed information. The experimental results demonstrate that the proposed method is superior to other typical methods in both subjective and objective evaluations.
Application of Partial Differential Segmentation Model with Adaptive Weight in Infrared Image of Substation Equipment
CHEN Da, HE Quancai, DI Erzhen, DENG Zaozhu
2022, 44(2): 179-188.
Abstract HTML (74) PDF(33)
Abstract:
To address the problem whereby the equipment area cannot be accurately segmented in the infrared image while maintaining substation equipment, this study applied an improved adaptive weight partial differential image segmentation method to segment the equipment area. By analyzing problems such as low signal-to-noise ratio, blurred edges, low contrast, and uneven grayscale of images, we investigated the disadvantages of traditional image segmentation methods, and the segmentation model based on partial differential equations was improved. The proposed adaptive weight LGIF model utilizes the different gray scale inhomogeneity of the target equipment and the background, associated it with the respective average gray scale, and adjusted the weights of the model's global and local energy items. Experiments in a variety of scenarios have verified that the model in this study is more effective and accurate than the OTSU method, CV model, and fixed-weight LGIF model, which is convenient for follow-up feature extraction and recognition.
IR Applications
Debonding Defect Recognition of Building Decoration Layers by UAV Thermography
PENG Xiong, ZHONG Xingu, ZHAO Chao, CHEN Anhua, ZHANG Tianyu
2022, 44(2): 189-197.
Abstract HTML (20) PDF(43)
Abstract:
The phenomenon of building decorative layers (BDLs) falling off of exterior walls is quite common, and is of great concerns to human safety. In this study, a rotor unmanned aerial vehicle (UAV) equipped with an infrared thermal camera is used as the working platform to detect debonding BDL defects to obtain the change in law of its thermography imagery. Based on the analysis of the temperature field and shape characteristics of thermography images of BDLs, an image segmentation method for debonding defects based on fuzzy clustering is proposed, and a shape feature vector set of debonding BDL defects is constructed. Therefore, a feature learning model for debonding defect recognition and a calculation method for the actual area of debonding defects based on support vector machines are established. Finally, a case study of the teaching building inspection with several peeling veneers is carried out to demonstrate the effectiveness of the proposed method. Compared with the manual test, the results show that the small-sample machine-learning algorithm for debonding defect recognition based on prior feature law has advantages, and can effectively reduce the occurrence of accidents presenting potential practical applications.
Analysis of SF6 Leakage Detection Using Infrared Imaging
JI Yiping, DENG Xianqin, XU Peng, GAO Kai
2022, 44(2): 198-204.
Abstract HTML (209) PDF(88)
Abstract:
This paper discusses the principles of SF6 infrared imaging leakage detection technology, and summarizes the standards related to detection technology. According to the technical principles, the influencing factors in the testing practice are analyzed, and corresponding countermeasures are proposed. Further, the characteristics of infrared imaging leakage detection technology are compared and analyzed. The technology application strategy is formulated according to its characteristics. Based on analyses and discussions, this paper shows the potential for improvements to SF6 infrared imaging leakage detection technology, and the inspection quality of SF6 gas insulation equipment, such as switches, mutual inductors, bushing, and transformers, can be improved