留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀疏增强重加权与掩码块张量的红外弱小目标检测

孙尚琦 张宝华 李永翔 吕晓琪 谷宇 李建军

孙尚琦, 张宝华, 李永翔, 吕晓琪, 谷宇, 李建军. 基于稀疏增强重加权与掩码块张量的红外弱小目标检测[J]. 红外技术, 2024, 46(3): 305-313.
引用本文: 孙尚琦, 张宝华, 李永翔, 吕晓琪, 谷宇, 李建军. 基于稀疏增强重加权与掩码块张量的红外弱小目标检测[J]. 红外技术, 2024, 46(3): 305-313.
SUN Shangqi, ZHANG Baohua, LI Yongxiang, LYU Xiaoqi, GU Yu, LI Jianjun. Infrared Dim Target Detection Based on Sparse Enhanced Reweighting and Mask Patch-tensor[J]. Infrared Technology , 2024, 46(3): 305-313.
Citation: SUN Shangqi, ZHANG Baohua, LI Yongxiang, LYU Xiaoqi, GU Yu, LI Jianjun. Infrared Dim Target Detection Based on Sparse Enhanced Reweighting and Mask Patch-tensor[J]. Infrared Technology , 2024, 46(3): 305-313.

基于稀疏增强重加权与掩码块张量的红外弱小目标检测

基金项目: 

国家自然科学基金项目 61841204

国家自然科学基金项目 61962046

国家自然科学基金项目 62001255

国家自然科学基金项目 62066036

国家自然科学基金项目 62262048

内蒙古杰青培育项目 2018JQ02

内蒙古科技计划项目 2020GG0315

内蒙古科技计划项目 2021GG0082

中央引导地方科技发展资金项目 2021ZY0004

内蒙古草原英才,内蒙古自治区自然科学基金 2022MS06017

内蒙古草原英才,内蒙古自治区自然科学基金 2018MS06018

内蒙古草原英才,内蒙古自治区自然科学基金 2019MS06003

教育部“春晖计划”合作科研项目 教外司留1383号

内蒙古自治区高等学校科学技术研究项目 NJZY145

详细信息
    作者简介:

    孙尚琦(1998-),男,硕士生,主要研究方向为遥感图像处理及目标检测。E-mail:sunshangqi8086@163.com

    通讯作者:

    张宝华(1981-),男,博士,教授,硕士生导师,主要从事智能图像处理、红外小目标检测、目标跟踪、行人重识别、智能交通监控等方面的研究。E-mail:zbh_wj2004@imust.edu.cn

  • 中图分类号: TP391.41;TN215

Infrared Dim Target Detection Based on Sparse Enhanced Reweighting and Mask Patch-tensor

  • 摘要: 高度异构的复杂背景破坏了场景的低秩性,现有算法难以利用低秩稀疏恢复方法从背景中分离出小目标。为了解决上述问题,本文将小目标检测问题转化为张量模型的凸优化函数求解问题,提出基于稀疏增强重加权与掩码块张量的检测模型。首先,将掩码块图像以堆叠方式扩展至张量空间,并构建掩码块张量模型以筛选候选目标。在此基础上,利用结构张量构建稀疏增强重加权模型以抑制背景杂波,克服凸优化函数求解过程中设定加权参数的缺陷。实验表明本文检测算法在背景抑制因子及信杂比增益两方面都优于新近代表性算法,证明该算法的有效性。
  • 图  1  掩码块张量生成图

    Figure  1.  Mask patch-tensor generation diagram

    图  2  红外目标检测掩码图及三维结果显示图

    (a)红外图像;(b)红外掩码图(红框内包含候选目标);(c)掩码图的三维显示图;(d)检测结果图;(e)检测结果三维显示图

    Figure  2.  Infrared target detection mask diagram and three-dimensional result display diagram

    (a) Infrared image; (b) Infrared mask image (candidate targets are included in the red box); (c) 3-D display of the mask image; (d) Detection result image; (e) 3-D display of the detection result

    图  3  惩罚加权函数的检测结果对比。(a)红外图像;(b)原始图像的全局三维显示图;(c)指数型;(d)二次幂倒数型;(e)一次幂倒数型;(f)本文提出惩罚加权函数

    Figure  3.  Comparison of the detection results of the penalty weighting function. (a) Infrared image; (b) The global three -dimensional display of the original image; (c)Index; (d) Two -time dumplings; (e) Disposal type; (f)Proposed

    图  4  1~10组图像的ROC曲线

    Figure  4.  ROC curves of 1-10 groups of images

    表  1  本文算法流程

    Table  1.   Algorithm flow in this paper

    1: Input an infrared image fF, and set relevant parameters λ, L=1, h=10, ε=0.01, N, $ {W_{LS}} $;
    2: Initialization: ${{\overset{\rightharpoonup }{\mathop{T}}} ^0}$=y0=0, ${{\overset{\rightharpoonup }{\mathop{B}}} ^0}$=${\overset{\rightharpoonup }{\mathop{F}}} $, ${W_S}$=1, k=0, ${W^0} = {W_{{\text{LS}}}} \odot W_{\text{S}}^o$, μ=5⋅std(vec(${\overset{\rightharpoonup }{\mathop{F}}} $)), i=1, …, N;
    3: Generate filtered image fDOG through DOG bandpass filter.
    4: Obtain the mask image fmask according to cumulative distribution function of fDOG.
    5: Building patch-tensor ${\overset{\rightharpoonup }{\mathop{F}}} $ according to 3-D stacking of patch images.
    6: Compute the local structural weight $ {W_{LS}} $ of infrared image fF according to equation (7).
    7: Update : $ {{\overset{\rightharpoonup }{\mathop{B}}} ^{k + 1}} = {{\overset{\rightharpoonup }{\mathop{T}}} _\mu }({\overset{\rightharpoonup }{\mathop{F}}} + \mu {y^k} - {\varepsilon ^k}) $.
    8: Update: $ {{\overset{\rightharpoonup }{\mathop{T}}} ^{k + 1}} = {S_{\mu \lambda {W^k}}}({\overset{\rightharpoonup }{\mathop{F}}} + \mu {y^k} - {{\overset{\rightharpoonup }{\mathop{B}}} ^{k + 1}}) $.
    9: Update: $ {y^{k + 1}} = {y^k} + ({\overset{\rightharpoonup }{\mathop{F}}} - {{\overset{\rightharpoonup }{\mathop{B}}} ^{k + 1}} - {{\overset{\rightharpoonup }{\mathop{T}}} ^{k + 1}})\mu _{_k}^{ - 1} $.
    10: Calculate the sparse enhancement weight $ {W_{LS}} $ of the infrared image fF according to equation (8).
    11: Update: $ {W^{k + 1}} = {W_{{\text{LS}}}} \odot {W_{\text{S}}}^{k + 1} $.
    12: Separate targets ${{\overset{\rightharpoonup }{\mathop{T}}} ^k}$ and background $ {{\overset{\rightharpoonup }{\mathop{B}}} ^k} $ according to equation (10).
    13: Restore target patch-tensor ${{\overset{\rightharpoonup }{\mathop{T}}} ^k}$ and background patch-tensor $ {{\overset{\rightharpoonup }{\mathop{B}}} ^k} $ to target image fT and background image fB.
    14: Segment the target by the adaptive threshold method.
    下载: 导出CSV

    表  2  红外图像相关介绍

    Table  2.   Related introduction of infrared image

    Group Image Resolution Scene Source
    1 128×128 Woods MDvsFA[18]
    2 Sea and sky
    3 Sky cloud edge
    4 Heavy cloudy-sky
    5 Sky and leaves
    6 512×512 Dark cloud sky IRSTD-1K[19]
    7 Forest stone scene
    8 280×280 Cloudy sky SIRST[20]
    9 301×205 Cloud sky
    10 273×177 Coast of the cloud coast
    下载: 导出CSV

    表  3  1~10组检测结果的定量比较

    Table  3.   Quantitative comparison of detection results of 1-10 groups

    Methods IPI NIPPS NRAM PSTNN SMSL TV-PCP Tophat MLCM IAANet Ours
    Group 1 SCRG Inf Inf Inf Inf 84.88 89.61 121.78 Inf Inf Inf
    BSF Inf Inf Inf Inf 0.99 4.89 8.28 Inf Inf Inf
    Group 2 SCRG 0.08 0.10 Inf Inf 1.28 1.26 0.96 Inf 0.18 Inf
    BSF 2.10 13.95 Inf Inf 2.41 3.52 6.78 Inf 0.90 Inf
    Group 3 SCRG 7.87 0.11 Inf Inf 1.24 1.24 0.56 0.25 10.05 Inf
    BSF 1.36 25.26 Inf Inf 1.13 0.34 13.10 0.49 0.78 Inf
    Group 4 SCRG 0.21 Inf 0.52 0.46 1.11 0.62 1.13 0.45 0.34 Inf
    BSF 0.56 Inf 0.22 0.23 0.96 0.24 8.59 0.23 0.32 Inf
    Group 5 SCRG 1.14 0.26 Inf Inf 1.08 1.14 2.15 Inf Inf Inf
    BSF 2.78 22.11 Inf Inf 1.37 1.49 28.48 Inf Inf Inf
    Group 6 SCRG 0.90 0.13 0.17 0.76 0.47 2.39 3.23 0.85 0.89 Inf
    BSF 0.85 181.59 3.70 0.85 3.94 52.92 32.28 2.76 0.70 Inf
    Group 7 SCRG 0.78 Inf Inf Inf 0.78 0.52 0.37 Inf Inf Inf
    BSF 2.03 Inf Inf Inf 1.67 1.40 10.99 Inf Inf Inf
    Group 8 SCRG 1.81 0.13 4.26 2.00 1.09 0.39 1.26 Inf 2.08 0.02
    BSF 1.36 2.57 2.73 1.33 1.53 7.64 15.56 Inf 0.72 6.79
    Group 9 SCRG 1.11 Inf Inf Inf 1.12 1.12 1.28 1.30 Inf Inf
    BSF 6.71 Inf Inf Inf 5.10 9.11 0.30 0.30 Inf Inf
    Group 10 SCRG 0.52 0.03 3.20 Inf 1.02 1.03 0.12 0.09 Inf Inf
    BSF 2.77 730.01 729.98 Inf 8.64 40.57 114.37 1.04 Inf Inf
    Note: Inf represents infinity.
    下载: 导出CSV
  • [1] HAN J, YU Y, LIANG K, et al. Infrared small-target detection under complex background based on subblock-level ratio-difference joint local contrast measure[J]. Optical Engineering, 2018, 57(10): 103105.
    [2] LIU M, HUANG Z, FAN Z, et al. Infrared dim target detection and tracking based on particle filter[C]// 36th Chinese Control Conference (CCC), 2017: 5372-5378.
    [3] WANG H X, DONG H, ZHOU Z Q. Review on dim small target detection technologies in infrared single frame images[J]. Laser & Optoelectronics Progress, 2019, 56(8): 080001.
    [4] LI H J, ZHANG P, WANG X W, et al. Infrared small-target detection algorithms: a survey[J]. J. Image Graph., 2020, 25(9): 15.
    [5] 孙彬, 诸葛吴为, 高云翔, 等. 基于潜在低秩表示的红外和可见光图像融合[J]. 红外技术, 2022, 44(8): 853-862. http://hwjs.nvir.cn/article/id/7fc3a60d-61bb-454f-ad00-e925eeb54576

    SUN B, ZHUGE W W, GAO Y X, et al. Infrared and visible image fusion based on latent low-rank representation[J]. Infrared Technology, 2022, 44(8): 853-862. http://hwjs.nvir.cn/article/id/7fc3a60d-61bb-454f-ad00-e925eeb54576
    [6] GAO C, MENG D, YANG Y, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996-5009. doi:  10.1109/TIP.2013.2281420
    [7] DAI Y, WU Y, SONG Y. Infrared small target and background separation via column-wise weighted robust principal component analysis[J]. Infrared Physics & Technology, 2016, 77: 421-430.
    [8] ZHANG L, PENG Z. Infrared small target detection based on partial sum of the tensor nuclear norm[J]. Remote Sensing, 2019, 11(4): 382. doi:  10.3390/rs11040382
    [9] WANG X, PENG Z, KONG D, et al. Infrared dim target detection based on total variation regularization and principal component pursuit[J]. Image and Vision Computing, 2017, 63: 1-9. doi:  10.1016/j.imavis.2017.04.002
    [10] WANG X, PENG Z, KONG D, et al. Infrared dim and small target detection based on stable multisubspace learning in heterogeneous scene[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5481-5493. doi:  10.1109/TGRS.2017.2709250
    [11] ZHANG L, PENG L, ZHANG T, et al. Infrared small target detection via non-convex rank approximation minimization joint l 2, 1 norm[J]. Remote Sensing, 2018, 10(11): 1821. doi:  10.3390/rs10111821
    [12] SHI M, WANG H. Infrared dim and small target detection based on denoising autoencoder network[J]. Mobile Networks and Applications, 2020, 25: 1469-1483. doi:  10.1007/s11036-019-01377-6
    [13] DAI Y, WU Y, ZHOU F, et al. Attentional local contrast networks for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9813-9824. doi:  10.1109/TGRS.2020.3044958
    [14] HOU Q, WANG Z, TAN F, et al. RISTDnet: Robust infrared small target detection network[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.
    [15] GOLDFARB D, QIN Z. Robust low-rank tensor recovery: models and algorithms[J]. SIAM Journal on Matrix Analysis and Applications, 2014, 35(1): 225-253. doi:  10.1137/130905010
    [16] DAI Y, WU Y. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3752-3767. doi:  10.1109/JSTARS.2017.2700023
    [17] CANDES E J, WAKIN M B, BOYD S P. Enhancing sparsity by reweighted l1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5): 877-905.
    [18] WANG H, ZHOU L, WANG L. Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 8509-8518.
    [19] ZHANG M, ZHANG R, YANG Y, et al. ISNET: Shape matters for infrared small target detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 877-886.
    [20] DAI Y, WU Y, ZHOU F, et al. Asymmetric contextual modulation for infrared small target detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 950-959.
    [21] DAI Y, WU Y, SONG Y, et al. Non-negative infrared patch-image model: Robust target-background separation via partial sum minimization of singular values[J]. Infrared Physics & Technology, 2017, 81: 182-194.
    [22] TRAPNELL C, PACHTER L, SALZBERG S L. TopHat: discovering splice junctions with RNA-Seq[J]. Bioinformatics, 2009, 25(9): 1105-1111. doi:  10.1093/bioinformatics/btp120
    [23] HAN J, LIANG K, ZHOU B, et al. Infrared small target detection utilizing the multiscale relative local contrast measure[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 612-616. doi:  10.1109/LGRS.2018.2790909
    [24] WANG K, DU S, LIU C, et al. Interior attention-aware network for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13.
    [25] ZHANG T, WU H, LIU Y, et al. Infrared small target detection based on non-convex optimization with Lp-norm constraint[J]. Remote Sensing, 2019, 11(5): 559. doi:  10.3390/rs11050559
    [26] ZHANG T, PENG Z, WU H, et al. Infrared small target detection via self-regularized weighted sparse model[J]. Neurocomputing, 2021, 420: 124-148. doi:  10.1016/j.neucom.2020.08.065
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  25
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-23
  • 修回日期:  2023-04-28
  • 刊出日期:  2024-03-20

目录

    /

    返回文章
    返回