留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化钒非制冷探测器吸收特性研究

杨君 杨春丽 袁俊 尹树东 李华英 白兰艳 马敏

杨君, 杨春丽, 袁俊, 尹树东, 李华英, 白兰艳, 马敏. 氧化钒非制冷探测器吸收特性研究[J]. 红外技术, 2024, 46(3): 261-268.
引用本文: 杨君, 杨春丽, 袁俊, 尹树东, 李华英, 白兰艳, 马敏. 氧化钒非制冷探测器吸收特性研究[J]. 红外技术, 2024, 46(3): 261-268.
YANG Jun, YANG Chunli, YUAN Jun, YIN Shudong, LI Huaying, BAI Lanyan, MA Min. Study on Absorption Characteristics of VOx Uncooled Detectors[J]. Infrared Technology , 2024, 46(3): 261-268.
Citation: YANG Jun, YANG Chunli, YUAN Jun, YIN Shudong, LI Huaying, BAI Lanyan, MA Min. Study on Absorption Characteristics of VOx Uncooled Detectors[J]. Infrared Technology , 2024, 46(3): 261-268.

氧化钒非制冷探测器吸收特性研究

详细信息
    作者简介:

    杨君(1997-),男,硕士研究生,研究方向是非制冷探测器超表面结构技术研究。E-mail: yangjun_wulisuo@163.com

    通讯作者:

    杨春丽(1980-),女,正高级工程师,主要从事红外探测器研究。E-mail:149578363@qq.com

  • 中图分类号: TN215

Study on Absorption Characteristics of VOx Uncooled Detectors

  • 摘要: 随着氧化钒非制冷红外焦平面的像元尺寸的减小,导致探测器的吸收面积呈边长的二次方锐减,如何提高氧化钒非制冷红外焦平面阵列的吸收效率成为一个非常关键的研究课题。本文从材料和结构角度出发,分别在单层材料吸收特性、不同吸收结构、腔体高度、膜系厚度等几个方面对影响单层、双层氧化钒非制冷探测器光学吸收的各因素进行了全面系统的仿真。通过对各因素进行量化比较,同时结合仿真结果给出了提高氧化钒非制冷探测器吸收的系统方法,对于氧化钒非制冷探测器的设计与研究具有一定的参考意义。
  • 图  1  各材料光学参数及光学性质(图(b)、(c)中A、T、R分别表示吸收率(Absorptivity)、透射率(Transmissivity)、反射率(Reflectivity),图(c)与图(b)共用一个图例)

    Figure  1.  Optical parameters and optical properties of each material (A, T, and R in Figures (b) and (c) represent Absorptivity, Transmissivity, and Reflectivity, respectively. Figures (c) and (b) share the same legend)

    图  2  氧化钒非制冷探测器示意图

    Figure  2.  Schematic of an VOx uncooled detector

    图  3  氧化钒非制冷探测器桥腿类型

    Figure  3.  VOx uncooled detector bridge leg types

    图  4  氧化钒非制冷探测器不同吸收结构示意图(其中表面结构为SiNx/Ti/SiNx夹层柱状超表面天线结构,SiNx/Ti/SiNx夹层厚度分别为50 nm/10 nm/50 nm;天线周期为2.5 μm,柱状天线直径为1.5 μm;其他结构各膜系参数同图 2所示)

    Figure  4.  Schematic diagram of different absorption structures of VOx uncooled detectors(The surface structure is a SiNx/Ti/SiNx sandwich columnar metasurface antenna structure, with a thickness of 50nm/10nm/50nm for SiNx/Ti/SiNx interlayers; the antenna period is 2.5 μm, and the diameter of the columnar antenna is 1.5 μm; the parameters of other structures and film systems are shown in Figure 2)

    图  5  氧化钒非制冷探测器不同吸收结构吸收情况(图(a)~(h)共用图(a)的图例,其中R、A、T分别表示反射率(Reflectivity)、吸收率(Absorptivity)、透射率(Transmissivity))

    Figure  5.  Absorption of different absorption structures of VOx uncooled detectors (Figures (a) to (h) share the legend of Figure (a), where R, A, and T respectively represent Reflectivity, Absorptivity, and Transmittance)

    图  6  双层氧化钒非制冷探测器结构示意图

    Figure  6.  Schematic diagram of the structure of the double-layer VOx uncooled detector

    图  7  不同腔体吸收曲线(上层腔体固定时,吸收随下层腔体变化的曲线)

    Figure  7.  Absorption curves of different cavities (curves of absorption with lower chamber when the upper cavity is fixed)

    图  8  氧化钒非制冷探测器双层结构各层膜系不同厚度下吸收曲线

    Figure  8.  Absorption curves of different thicknesses of each layer film system in the double layer structure of VOx uncooled detectors

    图  9  基于上述仿真结果的氧化钒非制冷探测器不同吸收结构吸收情况对比图(其中图例表示如下: a—无吸收结构;b—有反射层;c—有谐振腔;d—有表面结构;e—有腔有反射层;f—有腔有表面结构;g—有反射层有表面结构;h—有表面结构有腔有反射层;i—双层结构)

    Figure  9.  Comparison diagram of different absorption structures of VOx uncooled detectors based on the above simulation results (the legend is shown below: a—without absorption structure; b—with reflective layer; c—with resonant cavity; d—with surface structure; e—with cavity and reflective layer; f—with cavity and surface structure; g—with reflective layer and surface structure; h—with surface structure, cavity, and reflective layer; i—Two-layer structure)

    表  1  氧化钒非制冷探测器不同吸收结构吸收情况对比

    Table  1.   Comparison of absorption structures of VOx uncooled detectors

    Serial number Fill factor Resonator Reflective layer Surface structure 8-14 μm Effective average absorption
    1 50% without without without 16%
    2 70% without without without 22%
    3 70% with without without 30%
    4 70% without with without 11%
    5 70% without without with 29%
    6 70% with with without 44%
    7 70% with without with 36%
    8 70% without with with 32%
    9 70% with with with 49%
    下载: 导出CSV
  • [1] 李静, 宋广, 董珊, 等. 非制冷红外焦平面探测器研究进展与趋势[J]. 红外, 2020, 41(10): 8-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202010001.htm

    LI Jing, SONG Guang, DONG Shan, et al. Research progress and trends in uncooled infrared focal plane detectors[J]. Infrared, 2020, 41(10): 8-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202010001.htm
    [2] Blevin W R, Geist J. Influence of black coatings on pyroelectric detectors[J]. Appl. Opt., 1974, 13: 1171-1178. doi:  10.1364/AO.13.001171
    [3] 刘卫国, 金娜. 集成非制冷热成像探测阵列[M]. 北京: 国防工业出版社, 2004: 250-256.

    LIU Weiguo, JIN Na. Integrated uncooled Thermal Imaging Detection Array [M]. Beijing: National Defense Industry Press, 2004: 250-256.
    [4] Bly V T, Cox T J. Infrared absorber for ferroelectric detectors[J]. Appl. Opt., 1994, 33: 26-30. doi:  10.1364/AO.33.000026
    [5] Lampert C M. Coatings for enhanced photothermal energy collection Ⅰ. selective absorbers[J]. Solar Energy Materials, 1979, 1(5-6): 319-341. doi:  10.1016/0165-1633(79)90001-7
    [6] ZHU J, YU Z, Burkhard G F, et al. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays[J]. Nano Letters, 2009, 9(1): 279-282. doi:  10.1021/nl802886y
    [7] Sathiaraj T S, Thangaraj R, Sharbaty H A, et al. Ni-Al2O3 selective cermet coatings for photothermal conversion up to 500℃[J]. Thin Solid Films, 1990, 190(2): 241-254. doi:  10.1016/0040-6090(89)90914-0
    [8] Rephaeli E, Fan S. Tungsten black absorber for solar light with wide angular operation range[J]. Applied Physics Letters, 2008, 92(21): 211107. doi:  10.1063/1.2936997
    [9] Mahpeykar S M, XIONG Q, WANG X. Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes[J]. Optics Express, 2014, 22: A1576-A1588. doi:  10.1364/OE.22.0A1576
    [10] LIU X, GAO J, YANG H, et al. Silicon-based multilayer gratings with a designable narrowband absorption in the short-wave infrared[J]. Optics Express, 2016, 24(22): 25103-25110. DOI: 10.1364/OE.24.025103.
    [11] Stewart JW, Vella JH, LI W, et al. Ultrafast pyroelectric photodetection with on-chip spectral filters[J]. Nat. Mater., 2019, 19: 158-162.
    [12] Swett D W. Near zero index perfect metasurface absorber using inverted conformal mapping[J]. Scientific Reports, 2020, 10(1): 9731. doi:  10.1038/s41598-020-66476-x
    [13] Fitzgibbons E T, Han C J. Pixel structure having a bolometer with spaced apart absorber and transducer layers and an associated fabrication method[P]. United States Patent 6307194, [2023-07-12]. DOI: US6307194B1.
    [14] LI Chuan C, HAN C J, Skidmore G. Overview of DRS uncooled VOx infrared detector development[J]. Optical Engineering, 2011, 50(6): 061017. doi:  10.1117/1.3593155
    [15] Skidmore G D, Howard C G. Pixel structure having an umbrella type absorber with one or more recesses or channels sized to increase radiation absorption[P]. United States Patent 7622717, [2023-07-12]. DOI: US7622717B2.
    [16] WANG P, CHEN S, GAN X, et al. High sensitivity 17 μm pixel pitch 640×512 uncooled Infrared focal plane arrays based on amorphous vanadium oxide thin films[J]. IEEE Electron Device Letters, 2015, 36(9): 923-925. doi:  10.1109/LED.2015.2451995
    [17] Hsieh S W, CHANG C Y, LEE Y S, et al. Properties of plasma-enhanced chemical vapordeposited a-SiNx: H by various dilution gases[J]. Journal of Applied Physics, 1998, 76(6): 3645-3655.
    [18] 唐晋发, 郑权. 应用薄膜光学[M]. 上海: 上海科学技术出版社, 1984: 39-81.

    TANG Jinfa, ZHENG Quan. Applied Thin Film Optics[M]. Shanghai: Shanghai Science and Technology Press, 1984: 39-81
    [19] 董良, 岳瑞峰, 刘理天. 微辐射热计的光学与热学设计[J]. 红外与毫米波学报, 2003(2): 109-113. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200302006.htm

    DONG Liang, YUE Ruifeng, LIU Litian. Optical and thermal design of microbolometer[J]. Journal of Infrared and Millimeter Waves, 2003(2): 109-113. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200302006.htm
    [20] 许路加, 胡明, 杨海波, 等. 非制冷微测辐射热计支撑层厚度比研究[J]. 红外与毫米波学报, 2010, 29(4): 251-254. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201004004.htm

    XU Lujia, HU Ming, YANG Haibo, et al. Study on thickness ratio of support layer in uncooled microbolometer[J]. Journal of Infrared and Millimeter Waves, 2010, 29(4): 251-254. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201004004.htm
    [21] 苏君红. 红外材料与探测技术[M]. 杭州: 浙江科学技术出版社, 2015: 3.

    SU Junhong. Infrared Materials and Detection Technology[M]. Hangzhou: Zhejiang Science and Technology Press, 2015: 3.
    [22] Murphy D, Ray M, Wyles R, et al. High sensitivity (25 µm pitch) microbolometer FPAs[C]//Proc. SPIE, 2001, 4454: 147-159.
    [23] 王宏臣. 氧化钒薄膜及非致冷红外探测器阵列研究[D]. 武汉: 华中科技大学, 2006. DOI: 10.7666/d.d048209.

    WANG Hongchen. Research on vanadium oxide thin film and uncooled infrared detector array[D]. Wuhan: Huazhong University of Science and Technology, 2006. DOI: 10.7666/d.d048209.
    [24] CHEN H. Interference theory of metamaterial perfect absorbers[J]. Optics Express, 2012, 20: 7165-7172. doi:  10.1364/OE.20.007165
    [25] 吴宗凡. 红外与微光技术[M]. 北京: 国防工业出版社, 1998: 20-50.

    WU Zongfan. Infrared and Low-Light Technology[M]. Beijing: National Defense Industry Press, 1998: 20-50.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  20
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-13
  • 修回日期:  2023-11-22
  • 刊出日期:  2024-03-20

目录

    /

    返回文章
    返回