留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属氧化物异质结光电探测器研究进展

马兴招 唐利斌 左文彬 张玉平 姬荣斌

马兴招, 唐利斌, 左文彬, 张玉平, 姬荣斌. 金属氧化物异质结光电探测器研究进展[J]. 红外技术, 2024, 46(4): 363-375.
引用本文: 马兴招, 唐利斌, 左文彬, 张玉平, 姬荣斌. 金属氧化物异质结光电探测器研究进展[J]. 红外技术, 2024, 46(4): 363-375.
MA Xingzhao, TANG Libin, ZUO Wenbin, ZHANG Yuping, JI Rongbin. Research Progress in the Metal Oxide Heterojunction Photodetectors[J]. Infrared Technology , 2024, 46(4): 363-375.
Citation: MA Xingzhao, TANG Libin, ZUO Wenbin, ZHANG Yuping, JI Rongbin. Research Progress in the Metal Oxide Heterojunction Photodetectors[J]. Infrared Technology , 2024, 46(4): 363-375.

金属氧化物异质结光电探测器研究进展

基金项目: 

国家重点研发计划 2019YFB2203404

云南省创新团队项目 2018HC020

详细信息
    作者简介:

    马兴招(1995-),男,硕士研究生,研究方向是硅基异质结光电探测器

    通讯作者:

    唐利斌(1978-),男,正高级工程师,博士生导师,主要从事光电材料与器件的研究。E-mail: scitang@163.com

  • 中图分类号: TN304.055

Research Progress in the Metal Oxide Heterojunction Photodetectors

  • 摘要: 金属氧化物(metal oxide,MO)因其具有易于制备、高稳定性、对载流子的选择性传输等优点,被广泛应用于光电探测领域。MO材料具有较强的光吸收,但表面效应和缺陷态等问题导致了MO光电探测器响应速度低和暗电流较大的问题。异质结中的内建电场可以有效促进光生电子-空穴对的分离,从而提升器件响应速度和降低器件暗电流。因此,构建金属氧化物异质结光电探测器(heterojunction photodetectors,HPDs),对于MO在光电子领域的进一步应用具有重要的意义。本文先介绍了MO的界面性质,然后围绕PN、PIN和同型异质结3种结构,对金属氧化物HPDs的工作机制进行了阐述。接着对响应波段在紫外-可见-近红外光区的、具有不同结构的MO/MO和MO/Si HPDs的性能参数进行了分析和比较,并讨论了金属氧化物HPDs的性能优化方法,最后对金属氧化物HPDs的发展进行了展望。
  • 图  1  光电探测器的应用

    Figure  1.  Applications of photodetectors

    图  2  MO的界面特性:(a) 在MO界面上可以设计的关联电子的对称性和自由度[12];(b) 传统半导体的相图(左)和界面电子行为(右);(c)和(d)MO的相图(左)和界面电子行为(右),分别对应于产生电子形变(c)和不产生电子形变的情形(d)[13]

    Figure  2.  Properties of the MO interfaces: (a) The symmetries and degrees of freedom of correlated electrons that can be engineered at MO interfaces[12]; (b) Phase diagrams (left) and interface electronic behaviors (right) for conventional semiconductors; (c) and (d) Phase diagrams (left) and interface electronic behaviors (right) for MO, corresponding to the situations in which (c) and no electronic deformation is generated (d), respectively[13]

    图  3  金属氧化物HPDs的载流子传输机制:(a) MO/MO和(b)MO/Si PN结HPDs的能带示意图[23-24];(c) MO/MO和(d) MO/Si PIN结HPDs能带示意图[25-26];(e) MO/MO和(f) MO/Si同型异质结HPDs能带示意图[27-28]

    Figure  3.  Carrier transport mechanism of metal oxide HPDs: The energy band diagrams of (a) MO/MO and (b) MO/Si PN junction HPDs[23-24]; (c) MO/MO and (d) MO/Si PIN junction HPDs[25-26]; (e) MO/MO and (f) MO/Si isotype HPDs[27-28]

    图  4  金属氧化物HPDs的发展历程

    Figure  4.  Developments roadmap of metal oxide HPDs

    图  5  薄膜型MO/MO HPDs的结构和性能:(a) n-Ga2O3/p-NiO HPD的结构[71];(b) n-Ga2O3/p-NiO HPD的瞬态响应行为[71];(c) WO3/TiO2 HPD的结构[28];(d) TiO2,WO3和WO3/TiO2 PD I-V特性[28];(e) 柔性ZnO/SrCoOx HPD的结构[40];(f) ZnO/SrCoOx HPD在不同弯曲状态下的I-T曲线[40]

    Figure  5.  Structures and properties of the film-based MO/MO HPDs: (a) The structure of n-Ga2O3/p-NiO HPD[71]; (b) Transient response behavior of n-Ga2O3/p-NiO HPD[71]; (c) The structure of the WO3/TiO2 HPD[28]; (d) I-V characteristic of TiO2, WO3 and WO3/TiO2 PD[28]; (e) The structure of the flexible ZnO/SrCoOx HPD[40]; (f) I-T curves of the ZnO/SrCoOx HPD in different bending states[40]

    图  6  其他结构的MO/MO HPDs的性能:(a) ZnO/SnO2核壳纳米棒阵列HPD的结构[61];(b) ZnO/SnO2核壳纳米棒阵列的横截面SEM图像[61];(c) ZnO/SnO2 HPD在1 V偏压下的I-T曲线[61];(d) NiO纳米片/ZnO纳米棒阵列HPD的结构[73];(e) 零偏下的响应率在300~800 nm波长范围内的变化[73];(f) 横杆NiO/SnO2纳米纤维阵列HPD的结构[35];(g) NiO/SnO2 HPD的工作原理[35];(h) NiO/SnO2HPD在-5 V偏压下的响应率和探测率曲线[35];(i) α‑Ga2O3纳米棒阵列/Cu2O纳米球HPD的结构及其测试系统[39]

    Figure  6.  Properties of MO/MO HPDs with other structures: (a) The structure of ZnO/SnO2 core-shell nanorods array HPD[61]; (b) Cross-sectional SEM images of ZnO/SnO2 core-shell nanorods array[61]; (c) I-T curves of ZnO/SnO2 HPD at 1V bias[61]; (d) Structure of NiO nanosheet/ZnO nanorods array HPD[73]; (e) Wavelength-dependent responsivity at zero bias ranging from 300-800 nm[73]; (f) Structure of cross-bar NiO/SnO2 nanofiber array HPD[35]; (g) Working principle of the NiO/SnO2 HPD[35]; (h) Responsivity and detectivity curves of NiO/SnO2 HPD at -5 V bias[35]; (i) Structure and testing system of α‑Ga2O3 nanorods array/Cu2O nanosphere HPD[39]

    图  7  MO/Si HPDs的结构和性能:(a) p-NiO/n-Si HPD的结构[76];(b) p-NiO/n-Si HPD I-V特性,插图显示了I-V曲线的局部放大图[76];(c) n-ZnO纳米管/p-Si HPD的结构[55];(d) n-ZnO/p-Si HPD的响应率和探测率曲线[55];(e) r-GO/n-Si HPD的结构[51];(f) r-GO/n-Si HPD的瞬态响应[51]

    Figure  7.  Structures and properties of MO/Si HPDs: (a) Structure of p-NiO/n-Si HPD[76]; (b) I-V characteristic curves of the p-NiO/n-Si HPD, the inset shows a close-up view of the I-V curves[76]; (c) Structure of the n-ZnO nanotubes/p-Si HPD[55]; (d) The responsivity and detectivity curves of the n-ZnO/p-Si HPD[55]; (e) Structure of the r-GO/n-Si HPD[51]; (f)Transient response of the r-GO/n-Si HPD[51]

    图  8  金属氧化物HPDs的性能优化:(a) ε-Ga2O3/p-Si和ε-Ga2O3/Al2O3/p-Si HPDs的log I-V曲线[26];(b) NiO/ZnO和NiO/TiO2/ZnO HPDs在暗条件的log I-V曲线[67];(c) MoO3-x/Si HPD在光照下的J−V曲线[48];(d) p-NiO/n-ZnO和Pd NPs/p-NiO/n-ZnO NWs在可调制紫外光下的光电流和暗电流比[84];(e) Pd NPs/p-NiO/n-ZnO NWs的能带图[84];(f) 采用Al六方点等离子体阵列制备的Pd/TiO2/p-Si/Al HPD[87];(g) NiOx/n-Si和p-Ag: NiOx/n-Si HPDs的响应光谱[88];(h) 不同Eu掺杂浓度的TiO2薄膜的Tauc图[89];(i) n-β-Ga2O3/p-MnO QD和n-β-Ga2O3器件的响应光谱[37]

    Figure  8.  Performance optimization of metal oxide HPDs (a) Log I-V curves of ε-Ga2O3/p-Si and ε-Ga2O3/Al2O3/p-Si HPDs[26]; (b) Log I-V curves of NiO/ZnO and NiO/TiO2/ZnO HPDs in the dark[67]; (c) J-V curves of MoO3−x/Si HPD under illumination[48]; (d) Iphoto/Idark ratios for the p-NiO/n-ZnO and Pd NPs/p-NiO/n-ZnO NWs unde modulated UV illumination[84]; (e) Band diagrams for Pd NPs/p-NiO/n-ZnO NWs[84]; (f) Design of the fabricated Pd/TiO2/p-Si/Al HPD with Al hexagonal dots plasmonic array[87]; (g) Response spectra of NiOx/n-Si and p-Ag: NiOx/n-Si HPDs[88]; (h) Tauc plots of Eu: TiO2 films with different doping concentration[89]; (i) Response spectra of n-β-Ga2O3/p-MnO QDs and n-β-Ga2O3 device[37]

    表  1  不同MOs的性质

    Table  1.   Properties of different MOs

    MOs Conduction type Eg/(eV) Exciton binding energy/(meV) Crystal system Space group Ref.
    ZnO(Wurtzite) n 3.3 60 Hexagonal P63mc [2]
    TiO2(Anatase) n 3.2 130 Tetragonal C4/amc [3]
    TiO2(Rutile) n 3.0 130 Tetragonal P42/mmm [3]
    β-Ga2O3 n 4.9 40-50 Monoclinic C2/m [4]
    SnO2 n 3.6 130 Tetragonal P42/mnm [5]
    MoO3 p 3.0 - Orthorhombic - [6]
    V2O5 P 2.3 - Monoclinic P21/C [7]
    NiO P 3.6 110 Cubic Fm3m [8]
    下载: 导出CSV

    表  2  MO/MO和MO/Si HPDs的性能参数对比

    Table  2.   Comparisons of performance parameters for MO/MO and MO/Si HPDs

    Year Structure Fabrication method Bias/V λ/nm EQE/(%) R/(AW−1 D*/Jones Rectification ratio Rise/fall time Ref.
    2012 α-Fe2O3/p-Si Chemical solution deposition - 403 - 2×103 - - < 1 ms [43]
    2012 TiO2/SrTiO3 Sol-gel 10 260 - 46.1 - - 3.5 ms/1.4 s [44]
    2014 NiO/ZnO Spin coating -1 350 1800 10.2 4.66×1012 5×102 - [45]
    2015 CuO/SnO2 Magnetron sputtering 0.2 290 - 10.3 - - - [46]
    2015 MgZnO/i-MgO/p-Si MOCVD 6 240 600 1.16 - - 15 μs [47]
    2015 MoO3−x/n-Si Thermal evaporation 0 900 - - 6.29×1012 - 1/51.4 μs [48]
    2016 β-Ga2O3/p-Si Pulsed laser deposition 3 254 1.8×105 370 - - 1.79/0.27 s [49]
    2016 Mg0.18Zn0.82O/p-Si Magnetron sputtering - 320 - 4.21 - 32500 - [50]
    2016 GO/n-Si Modified Hummers method - 600 - 1.52 - - 2/3.7 ms [51]
    2017 NiO/n-Si Magnetron sputtering 5 365 - 4.5 - - 266/200 ms [52]
    2017 SnO2/SiO2/p-Si Magnetron sputtering -1 365 - 0.355 2.66×1012 - < 0.1 s [53]
    2017 TiO2/NiO Sol-gel
    spin-coating and oxidation
    6 280 80500 181.9 1.56×1014 - 717/598 ms [54]
    2017 p-Si/n-ZnO NTs Pulsed laser deposition -5 365 - 101.2 - - 0.44/0.59 s [55]
    2019 n-TiO2/p-Si Thermal oxidation -4 365 - 6.74 1.31×1012 - 127.6 /120.3 μs [56]
    2019 V2O5/n-Si Thermal evaporation - 940 - 0.185 1.34×1012 - 9.5/123 μs [57]
    2019 ZnO/NiO
    Electrospinning 0 350 - 0.415×10−3 - - 7.5/4.8 s [58]
    2019 n-SnO2/SiNWs Metal assisted chemical etching 5 UV - 0.35 8.03×1012 172.3 - [59]
    2020 NiO/β-Ga2O3 Magnetron sputtering 10 245 - 27.43
    3.14×1012 - - [60]
    2020 ZnO/SnO2 core-shell NAs Chemical liquid deposition 1 365 - 28.5(± 0.6) 2.9× 1014 - 8.7 s/20.8 s [61]
    2020 p-Cu2O/n-Si Successive ionic layer
    adsorption and reaction
    -5 500 3780 16.2 1.78×1012(−0.1 V) 118.4 < 10 ms [62]
    2021 MoO3−x/Al2O3/n-Si Thermal evaporation -5 980 900 7.11 9.85×1012 - 0.109/0.69 ms [63]
    2022 NiO/IGZO Magnetron sputtering 0 365 - 0.0288 6.99×1011 7.4×104 15/31 ms [64]
    2022 p-Mn2O3/n-Si Rapid thermal
    oxidation
    - 500 140 0.5 7.2×1012 - - [65]
    2022 p-Ag2O/n-Si Rapid thermal
    oxidation
    -4 450 118 0.43 9×1011 - - [66]
    2023 NiO/TiO2/ZnO Magnetron sputtering 2 365 - 291 6.9×1011 104 163/282 ms [67]
    2023 p-NiO/SiO2/n-ZnO Magnetron sputtering 2 365 2×103 5.77 1.51×1011 57 48 ms [68]
    2023 p-NiO/n-ZnO/n-Si Magnetron sputtering -1 280 - 3.672 3.3×1012 - 10.5/0.4 s [69]
    下载: 导出CSV
  • [1] YU X, Marks T J, Facchetti A. Metal oxides for optoelectronic applications[J]. Nature Materials, 2016, 15(4): 383-396. doi:  10.1038/nmat4599
    [2] YAO J Q, DENG H, LI M, et al. Improving processes on ZnO-based ultraviolet photodetector[J]. Advanced Materials Research, 2013, 685: 195-200. doi:  10.4028/www.scientific.net/AMR.685.195
    [3] Goldberg Y. Semiconductor near-ultraviolet photoelectronics[J]. Semiconductor Technology, 1999, 14(7): R41. doi:  10.1088/0268-1242/14/7/201
    [4] CHEN X, REN F, GU S, et al. Review of gallium-oxide-based solar -blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381-415. doi:  10.1364/PRJ.7.000381
    [5] Kar A, Stroscio M A, Dutta M, et al. Meyyappan, Observation of ultraviolet emission and effect of surface states on the luminescence from tin oxide nanowires[J]. Applied Physics Letters, 2009, 94: 101905. doi:  10.1063/1.3097011
    [6] LI Lin, SUN Yuxuan, SUN Weifeng. First-principles study of electronic structure, magnetic and optical properties of laminated molybdenum oxides[J]. Acta PhysicaSinica, 2019, 68(5): 057101-3.
    [7] XIAO Z R, GUO G Y. Structural, electronic and magnetic properties of V2O5-x: An ab initio study[J]. The Journal of Chemical Physics, 2009, 130(21): 214704. doi:  10.1063/1.3146790
    [8] Hwang J D, Chen H Y, Chen Y H, et al. Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering[J]. Nanotechnology, 2018, 29(29): 295705. doi:  10.1088/1361-6528/aac230
    [9] OUYANG W, TENG F, HE J H, et al. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering[J]. Advanced Functional Materials, 2019, 29(9): 1807672. doi:  10.1002/adfm.201807672
    [10] 郭天超. 金属氧化物/硅异质结光电探测器的构建及性能调控[D]. 北京: 中国石油大学, 2020: 16.

    GUO Tianchao, Construction and Performance Modulation of Metal Oxides/Silicon Heterojunction Photodetectors[D]. Beijing: China University of Petroleum, 2020: 16.
    [11] CHEN S, FU Y, Ishaq M, et al. Carrier recombination suppression and transport enhancement enable high-performance self-powered broadband Sb2Se3 photodetectors[J]. InfoMat, 2023, 5(4): e12400. doi:  10.1002/inf2.12400
    [12] HWANG H Y, Iwasa Y, Kawasaki M, et al. Emergent phenomena at oxide interfaces[J]. Nature Materials, 2012, 11(2): 103-113. doi:  10.1038/nmat3223
    [13] Mannhart J, Schlom D G. Oxide interfaces—an opportunity for electronics[J]. Science, 2010, 327(5973): 1607-1611. doi:  10.1126/science.1181862
    [14] Kennedy D. Breakthrough of the year[J]. Science, 2007, 318(5858): 1833-1833. doi:  10.1126/science.1154158
    [15] Shim M, Guyot-Sionnest P. N-type colloidal semiconductor nanocrystals[J]. Nature, 2000, 407(6807): 981-983. doi:  10.1038/35039577
    [16] JI T, LIU Q, ZOU R, et al. Enhanced UV-visible light photodetectors with a TiO2/Si heterojunction using band engineering[J]. Journal of Materials Chemistry C, 2017, 5(48): 12848-12856. doi:  10.1039/C7TC04811D
    [17] CHEN X, XU Y, ZHOU D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures[J]. ACS Applied materials & Interfaces, 2017, 9(42): 36997-37005.
    [18] Serin N, Yildiz A, Alsaç A A, et al. Estimation of compensation ratio by identifying the presence of different hopping conduction mechanisms in SnO2 thin films[J]. Thin Solid Films, 2011, 519(7): 2302-2307. doi:  10.1016/j.tsf.2010.11.027
    [19] Choi J M, Im S. Ultraviolet enhanced Si-photodetector using p-NiO films[J]. Applied Surface Science, 2005, 244(1-4): 435-438. doi:  10.1016/j.apsusc.2004.09.152
    [20] Almora O, Gerling L G, Voz C, et al. Superior performance of V2O5 as hole selective contact over other transition metal oxides in silicon heterojunction solar cells[J]. Solar Energy Materials and Solar Cells, 2017, 168: 221-226. doi:  10.1016/j.solmat.2017.04.042
    [21] Bullock J, WAN Y, XU Z, et al. Stable dopant-free asymmetric heterocontact silicon solar cells with efficiencies above 20%[J]. ACS Energy Letters, 2018, 3(3): 508-513. doi:  10.1021/acsenergylett.7b01279
    [22] WU W, BAO J, JIA X, et al. Dopant-free back contact silicon heterojunction solar cells employing transition metal oxide emitters[J]. PhysicaStatus Solidi-Rapid Research Letters, 2016, 10(9): 662-667. doi:  10.1002/pssr.201600254
    [23] Costas A, Florica C, Preda N, et al. Radial heterojunction based on single ZnO-CuxO core-shell nanowire for photodetector applications[J]. Scientific Reports, 2019, 9(1): 5553. doi:  10.1038/s41598-019-42060-w
    [24] Ahmed A A, Hashim M R, Qahtan T F, et al. Preparation and characteristics study of self-powered and fast response p-NiO/n-Si heterojunction photodetector[J]. Ceramics International, 2022, 48(14): 20078-20089. doi:  10.1016/j.ceramint.2022.03.285
    [25] HWANG J D, WU M S. Separate absorption and multiplication solar-blind photodiodes based on p-NiO/MgO/n-ZnO heterostructure[J]. Nanotechnology, 2020, 32(1): 015503.
    [26] QIAN H, ZHANG X, MA Y, et al. Quasi-vertical ε-Ga2O3 solar-blind photodetectors grown on p-Si substrates with Al2O3 buffer layer by metalorganic chemical vapor deposition[J]. Vacuum, 2022, 200: 111019. doi:  10.1016/j.vacuum.2022.111019
    [27] Mondal S, Halder S, Basak D. Ultrafast and ultrabroadband UV-vis-NIR photosensitivity under reverse and self-bias conditions by n+-ZnO/n-Si isotype heterojunction with > 1 kHz bandwidth[J]. ACS Applied Electronic Materials, 2023, 5(2): 1212-1223. doi:  10.1021/acsaelm.2c01668
    [28] Reddy Y A K, Ajitha B, Sreedhar A, et al. Enhanced UV photodetector performance in bi-layer TiO2/WO3 sputtered films[J]. Applied Surface Science, 2019, 494: 575-582. doi:  10.1016/j.apsusc.2019.07.124
    [29] ZU P, TANG Z K, WONG G K L, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature[J]. Solid State Communications, 1997, 103(8): 459-463. doi:  10.1016/S0038-1098(97)00216-0
    [30] Kawazoe H, Yanagi H, Ueda K, et al. Transparent p-type conducting oxides: design and fabrication of pn heterojunctions[J]. MRS Bulletin, 2000, 25(8): 28-36. doi:  10.1557/mrs2000.148
    [31] Park J W, Bogorin D F, Cen C, et al. Creation of a two-dimensional electron gas at an oxide interface on silicon[J]. Nature Communications, 2010, 1(1): 94. doi:  10.1038/ncomms1096
    [32] HONG Q, CAO Y, XU J, et al. Self-powered ultrafast broadband photodetector based on p–n heterojunctions of CuO/Si nanowire array[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 20887-20894.
    [33] ZOU H, LI X, PENG W, et al. Piezo-phototronic effect on selective electron or hole transport through depletion region of vis-NIR broadband photodiode[J]. Advanced Materials, 2017, 29(29): 1701412. doi:  10.1002/adma.201701412
    [34] WEI C, XU J, SHI S, et al. The improved photoresponse properties of self-powered NiO/ZnO heterojunction arrays UV photodetectors with designed tunable Fermi level of ZnO[J]. Journal of Colloid and Interface Science, 2020, 577: 279-289. doi:  10.1016/j.jcis.2020.05.077
    [35] LONG Z, XU X, YANG W, et al. Cross-bar SnO2-NiO nanofiber-array-based transparent photodetectors with high detectivity[J]. Advanced Electronic Materials, 2020, 6(1): 1901048. doi:  10.1002/aelm.201901048
    [36] ZHAO B, WANG F, CHEN H, et al. Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core–shell microwire[J]. Nano Letters, 2015, 15(6): 3988-3993. doi:  10.1021/acs.nanolett.5b00906
    [37] Alwadai N, Alharbi Z, Alreshidi F, et al. Enhanced Photoresponsivity UV-C photodetectors using a p–n junction based on ultra-wide-band gap Sn-doped β-Ga2O3 microflake/MnO quantum dots[J]. ACS Applied Materials & Interfaces, 2023, 15(9): 12127-12136.
    [38] XU R, RUAN S, ZHANG D, et al. Enhanced performance of ultraviolet photodetector modified by quantum dots with high responsivity and narrow detection region[J]. Journal of Alloys and Compounds, 2018, 751: 117-123. doi:  10.1016/j.jallcom.2018.03.382
    [39] HE C, GUO D, CHEN K, et al. α-Ga2O3 nanorod array——Cu2O microsphere p–n junctions for self-powered spectrum-distinguishable photodetectors[J]. ACS Applied Nano Materials, 2019, 2(7): 4095-4103. doi:  10.1021/acsanm.9b00527
    [40] WANG D, SHI P, XING R, et al. Self-powered ZnO/SrCoOx flexible ultraviolet detectors processed at room temperature[J]. Materials & Design, 2021, 203: 109616.
    [41] WU Z, ZHANG Z, SUN M, et al. Self-powered photodetector based on p-type CuBi2O4 with Fermi level engineering[J]. Advanced Materials Interfaces, 2021, 8(24): 2101443. doi:  10.1002/admi.202101443
    [42] Ashtar M, Marwat M A, LI Z, et al. Self-powered ultraviolet/visible photodetector based on CuBi2O4/PbZr0.52Ti0.48O3 heterostructure[J]. Journal of Luminescence, 2023, 260: 119855. doi:  10.1016/j.jlumin.2023.119855
    [43] SA T, WU G, QIN N, et al. Solution processed highly sensitive visible-light photodetectors based on α-Fe2O3/p-Si heterojunctions[J]. Sensors and Actuators B: Chemical, 2012, 173: 414-418. doi:  10.1016/j.snb.2012.07.027
    [44] ZHANG M, ZHANG H, LV K, et al. Ultraviolet photodetector with high internal gain enhanced by TiO2/SrTiO3 heterojunction[J]. Optics Express, 2012, 20(6): 5936-5941. doi:  10.1364/OE.20.005936
    [45] Kim D Y, Ryu J, Manders J, et al. Air-stable, solution-processed oxide p–n heterojunction ultraviolet photodetector[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1370-1374.
    [46] XIE T, Hasan M R, QIU B, et al. High-performing visible-blind photodetectors based on SnO2/CuO nanoheterojunctions[J]. Applied Physics Letters, 2015, 107(24): 241108. doi:  10.1063/1.4938129
    [47] XIE X, ZHANG Z, LI B, et al. Ultra-low threshold avalanche gain from solar-blindphotodetector based on graded-band-gap-cubic-MgZnO[J]. Optics Express, 2015, 23(25): 32329-32336. doi:  10.1364/OE.23.032329
    [48] ZHAO C, LIANG Z, Su M, et al. Self-powered, high-speed and visible–near infrared response of MoO3–x/n-Si heterojunction photodetector with enhanced performance by interfacial engineering[J]. ACS Applied Materials & Interfaces, 2015, 7(46): 25981-25990.
    [49] GUO X C, HAO N H, GUO D Y, et al. β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity[J]. Journal of Alloys and Compounds, 2016, 660: 136-140. doi:  10.1016/j.jallcom.2015.11.145
    [50] HWANG J D, WANG S Y, HWANG S B. Using oxygen-plasma treatment to improve the photoresponse of Mg0.18Zn0.82O/p-Si heterojunction photodetectors[J]. Journal of Alloys and Compounds, 2016, 656: 618-621. doi:  10.1016/j.jallcom.2015.10.065
    [51] LI G, LIU L, WU G, et al. Self-powered UV——near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction[J]. Small, 2016, 12(36): 5019-5026. doi:  10.1002/smll.201600835
    [52] Ahmed A A, Devarajan M, Afzal N. Fabrication and characterization of high performance MSM UV photodetector based on NiO film[J]. Sensors and Actuators A: Physical, 2017, 262: 78-86. doi:  10.1016/j.sna.2017.05.028
    [53] LING C, GUO T, LU W, et al. Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction[J]. Nanoscale, 2017, 9(25): 8848-8857. doi:  10.1039/C7NR03437G
    [54] ZHANG D, LIU C, XU R, et al. The effect of self-depleting in UV photodetector based on simultaneously fabricated TiO2/NiOpn hetero-junction and Ni/Au composite electrode[J]. Nanotechnology, 2017, 28(36): 365505. doi:  10.1088/1361-6528/aa7bb8
    [55] Flemban T H, Haque M A, Ajia I, et al. A photodetector based on p-Si/n-ZnO nanotube heterojunctions with high ultraviolet responsivity[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 37120-37127.
    [56] Chauhan K R, Patel D B. Functional nanocrystalline TiO2 thin films for UV enhanced highly responsive silicon photodetectors[J]. Journal of Alloys and Compounds, 2019, 792: 968-975. doi:  10.1016/j.jallcom.2019.04.111
    [57] FU Y, LIU Y, MA K, et al. Interfacial engineering to boost photoresponse performance and stability of V2O5/n-Si heterojunction photodetectors[J]. Journal of Alloys and Compounds, 2020, 819: 153063. doi:  10.1016/j.jallcom.2019.153063
    [58] ZHANG Z, NING Y, FANG X. From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photo-detectors[J]. Journal of Materials Chemistry C, 2019, 7(2): 223-229. doi:  10.1039/C8TC05877F
    [59] Yuvaraja S, Kumar V, Dhasmana H, et al. Ultraviolet detection properties of electrodeposited n-SnO2 modified p-Si nanowires hetero-junction photodiode[J]. Journal of Materials Science: Materials in Electronics, 2019, 30: 7618-7628. doi:  10.1007/s10854-019-01077-7
    [60] JIA M, WANG F, TANG L, et al. High-performance deep ultraviolet photodetector based on NiO/β-Ga2O3 heterojunction[J]. Nanoscale Research Letters, 2020, 15(1): 47. doi:  10.1186/s11671-020-3271-9
    [61] FU Q M, PENG J L, YAO Z C, et al. Highly sensitive ultraviolet photodetectors based on ZnO/SnO2 core-shell nanorod arrays[J]. Applied Surface Science, 2020, 527: 146923. doi:  10.1016/j.apsusc.2020.146923
    [62] HUANG C Y, WEI E C, YUAN C T. Dual functional modes for nano-structured p-Cu2O/n-Si heterojunction photodiodes[J]. Nanotechnology, 2020, 32(7): 075202.
    [63] XU Y, SHEN H, XU B, et al. High-performance MoOx/n-Si heterojunction NIR photodetector with aluminum oxide as a tunneling passivation interlayer[J]. Nanotechnology, 2021, 32(27): 275502. doi:  10.1088/1361-6528/abf37c
    [64] WANG M, ZHANG J, XIN Q, et al. Self-powered UV photodetectors and imaging arrays based on NiO/IGZO heterojunctions fabricated at room temperature[J]. Optics Express, 2022, 30(15): 27453-27461. doi:  10.1364/OE.463926
    [65] Kadhm A J, Ismail R A, Atwan A F. Fabrication of visible-enhanced nanostructured Mn2O3/Si heterojunction photodetector by rapid thermal oxidation[J]. Silicon, 2022, 14(10): 5297-5310. doi:  10.1007/s12633-021-01314-x
    [66] Ismail R A, Al-Samarai A M E, Ahmed F M. Preparation of high-quantum efficiency nanostructured Ag2O/Si photodetector by rapid thermal oxidation of Ag2S film: the role of oxidation time[J]. Optik, 2022, 257: 168794. doi:  10.1016/j.ijleo.2022.168794
    [67] SHANG G, TANG L, WU G, et al. High-performance NiO/TiO2/ZnO photovoltaic UV detector[J]. Sensors, 2023, 23(5): 2741. doi:  10.3390/s23052741
    [68] JIA M, WANG F, TANG L, et al. Low-power-consumption ultraviolet photodetector based on p-NiO/SiO2/n-ZnO[J]. Optics & Laser Technology, 2023, 157: 108634.
    [69] HWANG J D, LIN M C. ZnO hole blocking layer induced highly UV responsive p-NiO/n-ZnO/n-Si heterojunction photodiodes[J]. Sensors and Actuators A: Physical, 2023, 349: 114087. doi:  10.1016/j.sna.2022.114087
    [70] Basak D, Amin G, Mallik B, et al. Photoconductive UV detectors on sol-gel-synthesized ZnO films[J]. Journal of Crystal Growth, 2003, 256(1-2): 73-77. doi:  10.1016/S0022-0248(03)01304-6
    [71] WANG Y, WU C, GUO D, et al. All-oxide NiO/Ga2O3 p-n junction for self-powered UV photodetector[J]. ACS Applied Electronic Materials, 2020, 2(7): 2032-2038. doi:  10.1021/acsaelm.0c00301
    [72] ZOU J, ZHANG Q, HUANG K, et al. Ultraviolet photodetectors based on anodic TiO2 nanotube arrays[J]. The Journal of Physical Chemistry C, 2010, 114(24): 10725-10729. doi:  10.1021/jp1011236
    [73] CAO R, XU J, SHI S, et al. High-performance self-powered ultraviolet photodetectors based on mixed-dimensional heterostructure arrays formed from NiO nanosheets and TiO2 nanorods[J]. Journal of Materials Chemistry C, 2020, 8(28): 9646-9654. doi:  10.1039/D0TC01956A
    [74] LI Z, QIAO H, GUO Z, et al. High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability[J]. Advanced Functional Materials, 2018, 28(16): 1705237. doi:  10.1002/adfm.201705237
    [75] Cheemadan S, Kumar M C S. Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films[J]. Materials Research Express, 2018, 5(4): 046401. doi:  10.1088/2053-1591/aab875
    [76] Chaoudhary S, Dewasi A, Rastogi V, et al. Laser ablation fabrication of a p-NiO/n-Si heterojunction for broadband and self-powered UV-visible-NIR photodetection[J]. Nanotechnology, 2022, 33(25): 255202. doi:  10.1088/1361-6528/ac5ca6
    [77] Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J]. Advanced Materials, 2003, 15(5): 464-466. doi:  10.1002/adma.200390108
    [78] JIANG D Y, ZHANG X Y, LIU Q S, et al. Improved ultraviolet/visible rejection ratio using MgZnO/SiO2/n-Si heterojunction photodetectors[J]. Applied Surface Science, 2010, 256(21): 6153-6156. doi:  10.1016/j.apsusc.2010.03.051
    [79] ZHANG T C, GUO Y, MEI Z X, et al. Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO∕p-Si[J]. Applied Physics Letters, 2009, 94(11): 113508. doi:  10.1063/1.3103272
    [80] Tasi D S, KANG C F, WANG H H, et al. n-ZnO/LaAlO3/p-Si heterojunction for visible-blind UV detection[J]. Optics Letters, 2012, 37(6): 1112-1114. doi:  10.1364/OL.37.001112
    [81] LI Q, LI Z, YANG H, et al. Novel aluminum plasmonic absorber enhanced by extraordinary optical transmission[J]. Optics Express, 2016, 24(22): 25885-25893. doi:  10.1364/OE.24.025885
    [82] WU Y, SUN X J, JIA Y P, et al. Review of improved spectral response of ultraviolet photodetectors by surface plasmon[J]. Chinese Physics B, 2018, 27(12): 126101. doi:  10.1088/1674-1056/27/12/126101
    [83] El-Mahalawy A M, Wassel A R. Enhancement of organic/inorganic hybrid photodetector based on pentacene/n-Si by surface plasmonic effect of gold and silver nanoparticles: a comparative study[J]. Optics & Laser Technology, 2020, 131: 106395.
    [84] Hsu C L, WANG Y C, CHANG S P, et al. Ultraviolet/visible photodetectors based on p-n NiO/ZnO nanowires decorated with Pd nanoparticles[J]. ACS Applied Nano Materials, 2019, 2(10): 6343-6351. doi:  10.1021/acsanm.9b01333
    [85] ZHANG X, CHEN Y L, LIU R S, et al. Plasmonic photocatalysis[J]. Reports on Progress in Physics, 2013, 76(4): 046401. doi:  10.1088/0034-4885/76/4/046401
    [86] Kodama R H, Berkowitz A E. Atomic-scale magnetic modeling of oxide nanoparticles[J]. Physical Review B, 1999, 59(9): 6321. doi:  10.1103/PhysRevB.59.6321
    [87] El-Mahalawy A M, Abdrabou M M, Wassel A R, et al. Plasmonic enhanced ultraviolet photodetection performance of n-TiO2/p-Si anisotype heterojunction with aluminum patterned array[J]. Journal of Physics and Chemistry of Solids, 2022, 170: 110943. doi:  10.1016/j.jpcs.2022.110943
    [88] HWANG J D, WANG S T. High-performance multicolor p-Ag: NiOx/n-Si heterojunction photodiode enhanced by Ag-doped NiOx[J]. Materials Science in Semiconductor Processing, 2022, 139: 106376. doi:  10.1016/j.mssp.2021.106376
    [89] Ruzgar S, Caglar Y, Polat O, et al. An Investigation of the optoelectrical properties of n-TiO2Eu/p-Si heterojunction photodiode[J]. Surfaces and Interfaces, 2022, 30: 101832. doi:  10.1016/j.surfin.2022.101832
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  20
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-08
  • 修回日期:  2024-04-13
  • 刊出日期:  2024-04-20

目录

    /

    返回文章
    返回