留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向真实场景的单帧红外图像超分辨率重建

师奕峰 陈楠 朱芳 毛文彪 李发明 王添福 张济清 姚立斌

师奕峰, 陈楠, 朱芳, 毛文彪, 李发明, 王添福, 张济清, 姚立斌. 面向真实场景的单帧红外图像超分辨率重建[J]. 红外技术, 2024, 46(4): 427-436.
引用本文: 师奕峰, 陈楠, 朱芳, 毛文彪, 李发明, 王添福, 张济清, 姚立斌. 面向真实场景的单帧红外图像超分辨率重建[J]. 红外技术, 2024, 46(4): 427-436.
SHI Yifeng, CHEN Nan, ZHU Fang, MAO Wenbiao, LI Faming, WANG Tianfu, ZHANG Jiqing, YAO Libin. Single-frame Infrared Image Super-Resolution Reconstruction for Real Scenes[J]. Infrared Technology , 2024, 46(4): 427-436.
Citation: SHI Yifeng, CHEN Nan, ZHU Fang, MAO Wenbiao, LI Faming, WANG Tianfu, ZHANG Jiqing, YAO Libin. Single-frame Infrared Image Super-Resolution Reconstruction for Real Scenes[J]. Infrared Technology , 2024, 46(4): 427-436.

面向真实场景的单帧红外图像超分辨率重建

详细信息
    作者简介:

    师奕峰(1998-),男,硕士研究生,主要从事图像处理方面的研究

    通讯作者:

    陈楠(1985-),男,博士,正高级工程师,博士生导师,主要从事混合信号集成电路设计方面的研究。E-mail:chennan_kip@163.com

    张济清(1987-),男,博士,高级工程师,硕士生导师,主要从事混合信号集成电路设计方面的研究。E-mail:jiqingzhang@163.com

  • 中图分类号: TP391

Single-frame Infrared Image Super-Resolution Reconstruction for Real Scenes

  • 摘要: 现有的红外图像超分辨率重建方法主要依赖实验数据进行设计,但在面对真实环境中的复杂退化情况时,它们往往无法稳定地表现。针对这一挑战,本文提出了一种基于深度学习的新颖方法,专门针对真实场景下的红外图像超分辨率重建,构建了一个模拟真实场景下红外图像退化的模型,并提出了一个融合通道注意力与密集连接的网络结构。该结构旨在增强特征提取和图像重建能力,从而有效地提升真实场景下低分辨率红外图像的空间分辨率。通过一系列消融实验和与现有超分辨率方法的对比实验,本文方法展现了其在真实场景下红外图像处理中的有效性和优越性。实验结果显示,本文方法能够生成更锐利的边缘,并有效地消除噪声和模糊,从而显著提高图像的视觉质量。
  • 图  1  本文提出的红外图像退化模型

    Figure  1.  The proposed infrared image degradation model

    图  2  红外图像超分辨率重建网络结构

    Figure  2.  Structure of infrared image super-resolution reconstruction network

    图  3  训练流程示意图

    Figure  3.  Schematic diagram of the training process

    图  4  本文方法与无退化模型变体的2×超分结果对比

    Figure  4.  Comparison of 2× super-resolution results between our method and the no degradation variant

    图  5  不同方法在场景1下2×倍超分结果对比

    Figure  5.  Comparison of 2× super-resolution results under scene 1 using different methods

    图  6  不同方法在场景2下2×倍超分结果对比

    Figure  6.  Comparison of 2× super-resolution results under scene 2 using different methods

    图  7  不同方法在场景3下4×倍超分结果对比

    Figure  7.  Comparison of 4× super-resolution results under scene 3 using different methods

    图  8  不同方法在场景4下4×倍超分结果对比

    Figure  8.  Comparison of 4× super-resolution results under scene 4 using different methods

    表  1  CADB模块中的密集连接结构参数

    Table  1.   Parameters of the densely connected structure in the CADB module

    Layer type Kernel size Input channels Output channels Activation function
    Conv1 3×3 64 16 PReLU
    Conv2 3×3 80 16 PReLU
    Conv3 3×3 96 16 PReLU
    Conv4 3×3 112 16 PReLU
    Conv5 3×3 128 64 -
    下载: 导出CSV

    表  2  CADB模块中的通道注意力结构参数

    Table  2.   Parameters of the channel attention structure in the CADB module

    Layer type Kernel size Input channels Output channels Activation function
    Conv1 3×3 64 16 GELU
    Conv2 3×3 16 64 -
    Pooling 1×1 64 64 -
    Conv3 1×1 64 4 ReLU
    Conv4 1×1 4 64 Sigmoid
    下载: 导出CSV

    表  3  重建模块参数

    Table  3.   Parameters of the reconstruction module

    Layer type Kernel size Input channels Output channels Activation function
    Conv1 3×3 64 64 LReLU
    Conv2 3×3 64 32 LReLU
    Conv3 3×3 32 16 LReLU
    Conv4 3×3 16 1 -
    下载: 导出CSV

    表  4  不同超分倍数下本文方法与无退化模型变体的无参考图像质量评价指标比较

    Table  4.   Comparison of no-reference image quality assessment metrics between our method and the no degradation variant at different scaling scales

    Scale Methods BRISQUE NIQE PI
    Ours-ND 37.84 6.494 6.892
    Ours 20.902 4.800 5.167
    Ours-ND 46.208 6.931 7.692
    Ours 28.480 5.628 5.384
    下载: 导出CSV

    表  5  不同超分倍数下本文方法与其他超分辨率方法在无参考图像质量评价指标上的比较

    Table  5.   Comparison of no-reference image quality assessment metrics between our method and other super-resolution methods at different scaling factors

    Scale Methods BRISQUE NIQE PI
    SRCNN 35.298 6.375 6.800
    ESRGAN 26.559 5.139 6.206
    SwinIR 34.998 5.515 6.381
    Oz 39.161 6.483 6.954
    Zou 40.697 6.116 6.750
    Ours 20.902 4.800 5.167
    SRCNN 53.581 6.758 7.321
    ESRGAN 31.071 5.835 6.982
    SwinIR 55.269 6.577 7.225
    Oz 53.088 7.313 7.651
    Zou 63.166 8.162 8.023
    Ours 28.480 5.628 5.384
    下载: 导出CSV
  • [1] WANG Z, CHEN J, Hoi S C H. Deep learning for image super-resolution: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(10): 3365-3387.
    [2] LI J, PEI Z, ZENG T. From beginner to master: A survey for deep learning-based single-image super-resolution[J]. arXiv preprint arXiv: 2109.14335, 2021.
    [3] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2): 295-307.
    [4] SHI W, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 1874-1883.
    [5] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of The IEEE Conference on Computer Vision And Pattern Recognition Workshops, 2017: 136-144.
    [6] WANG X, YU K, WU S, et al. Esrgan: Enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 63-79.
    [7] SUN C, LV J, LI J, et al. A rapid and accurate infrared image super-resolution method based on zoom mechanism[J]. Infrared Physics & Technology, 2018, 88: 228-238.
    [8] Suryanarayana G, TU E, YANG J. Infrared super-resolution imaging using multi-scale saliency and deep wavelet residuals[J]. Infrared Physics & Technology, 2019, 97: 177-186.
    [9] YAO T, LUO Y, HU J, et al. Infrared image super-resolution via discriminative dictionary and deep residual network[J]. Infrared Physics & Technology, 2020, 107: 103314.
    [10] Oz N, Sochen N, Markovich O, et al. Rapid super resolution for infrared imagery[J]. Optics Express, 2020, 28(18): 27196-27209. doi:  10.1364/OE.389926
    [11] ZOU Y, ZHANG L, LIU C, et al. Super-resolution reconstruction of infrared images based on a convolutional neural network with skip connections[J]. Optics and Lasers in Engineering, 2021, 146: 106717. doi:  10.1016/j.optlaseng.2021.106717
    [12] 李方彪, 何昕, 魏仲慧, 等. 生成式对抗神经网络的多帧红外图像超分辨率重建[J]. 红外与激光工程, 2018, 47(2): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201802004.htm

    LI F, HE X, WEI Z, et al. Multiframe infrared image super-resolution reconstruction using generative adversarial networks[J]. Infrared and Laser Engineering, 2018, 47(2): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201802004.htm
    [13] 魏子康, 刘云清. 改进的RDN灰度图像超分辨率重建方法[J]. 红外与激光工程, 2020, 49(S1): 20200173. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2020S1022.htm

    WEI Z, LIU Y. Gray image super-resolution reconstruction based on improved RDN method[J]. Infrared and Laser Engineering, 2020, 49(S1): 20200173. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2020S1022.htm
    [14] 胡蕾, 王足根, 陈田, 等. 一种改进的SRGAN红外图像超分辨率重建算法[J]. 系统仿真学报, 2021, 33(9): 2109-2118. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202109013.htm

    HU L, WANG Z, CHEN T, et al. An improved SRGAN infrared image super-resolution reconstruction algorithm[J]. Journal of System Simulation, 2021, 33(9): 2109-2118. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202109013.htm
    [15] 邱德粉, 江俊君, 胡星宇, 等. 高分辨率可见光图像引导红外图像超分辨率的Transformer网络[J]. 中国图象图形学报, 2023, 28(1): 196-206. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202301012.htm

    QIU D, JIANG J, HU X, et al. Guided transformer for high-resolution visible image guided infrared image super-resolution[J]. Journal of Image and Graphics, 2023, 28(1): 196-206. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202301012.htm
    [16] ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 286-301.
    [17] TONG T, LI G, LIU X, et al. Image super-resolution using dense skip connections[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 4799-4807.
    [18] ZHANG K, Liang J, Van Gool L, et al. Designing a practical degradation model for deep blind image super-resolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 4791-4800.
    [19] WANG X, XIE L, DONG C, et al. Real-esrgan: Training real-world blind super-resolution with pure synthetic data[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 1905-1914.
    [20] ZHANG W, SHI G, LIU Y, et al. A closer look at blind super-resolution: Degradation models, baselines, and performance upper bounds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 527-536.
    [21] LIANG J, CAO J, SUN G, et al. Swinir: Image restoration using swin transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 1833-1844.
    [22] Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13): 800-801. doi:  10.1049/el:20080522
    [23] Hanhart P, Korshunov P, Ebrahimi T. Benchmarking of quality metrics on ultra-high definition video sequences[C]//18th International Conference on Digital Signal Processing (DSP)of IEEE, 2013: 1-8.
    [24] Kundu D, Evans B L. Full-reference visual quality assessment for synthetic images: A subjective study[C]// IEEE International Conference on Image Processing (ICIP), 2015: 2374-2378.
    [25] Mittal A, Soundararajan R, Bovik A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters, 2012, 20(3): 209-212.
    [26] Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708.
    [27] Blau Y, Mechrez R, Timofte R, et al. The 2018 PIRM challenge on perceptual image super-resolution[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 334-355.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  17
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-06
  • 修回日期:  2024-01-19
  • 刊出日期:  2024-04-20

目录

    /

    返回文章
    返回