留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低发射率兼低光泽颜填料Al-Sr10的制备及其消光机理研究

王业健 徐国跃 谭淑娟 王梅丰

王业健, 徐国跃, 谭淑娟, 王梅丰. 低发射率兼低光泽颜填料Al-Sr10的制备及其消光机理研究[J]. 红外技术, 2024, 46(4): 413-418.
引用本文: 王业健, 徐国跃, 谭淑娟, 王梅丰. 低发射率兼低光泽颜填料Al-Sr10的制备及其消光机理研究[J]. 红外技术, 2024, 46(4): 413-418.
WANG Yejian, XU Guoyue, TAN Shujuan, WANG Meifeng. Preparation of Low Emissivity and Low Gloss Filler Al-Sr10 and its Extinction Mechanism[J]. Infrared Technology , 2024, 46(4): 413-418.
Citation: WANG Yejian, XU Guoyue, TAN Shujuan, WANG Meifeng. Preparation of Low Emissivity and Low Gloss Filler Al-Sr10 and its Extinction Mechanism[J]. Infrared Technology , 2024, 46(4): 413-418.

低发射率兼低光泽颜填料Al-Sr10的制备及其消光机理研究

详细信息
    作者简介:

    王业健(1998-),男,湖北荆州人,助理工程师,硕士,研究方向:材料的腐蚀损伤分析,多频谱兼容隐身材料

    通讯作者:

    徐国跃(1958-),男,江苏南京人,教授,博士生导师,研究方向:特种功能材料关键技术。E-mail: xuguoy@nuaa.edu.cn

  • 中图分类号: TN213

Preparation of Low Emissivity and Low Gloss Filler Al-Sr10 and its Extinction Mechanism

  • 摘要: 为了探究Al-Sr10具有低光泽属性的本质,对该材料进行X射线衍射、X射线能量色散谱、面扫元素分析、8~14 μm红外发射率、光泽度及400~760 nm可见光反射率测试。并采用高能球磨法制备该颜填料,通过扫描电子显微镜等手段探究Al-Sr10颜填料的组分、形态和光学性能随球磨时间的变化。结果表明,Al-Sr10表面易氧化形成灰黑色氧化锶,以及固溶体中的锶元素产生等离激元效应共同作用导致材料消光;Al-Sr10颜填料的物相不会随球磨时间变化,在一定时间内,材料的片状化程度、发射率和光泽度性能随时间的延长得到改善,其中球磨15 h后的颜填料其片状化程度高,发射率低至0.123,光泽度低至3.8。
  • 图  1  Z-X材料的XRD测试曲线及金相显微结构:(a) Z-X材料的XRD衍射强度;(b) Z-X的金相照片;(c) 铝的金相照片

    Figure  1.  XRD and metallographic microstructure of Z-X powder: (a) XRD diffraction intensity of Z-X materials; (b) Metallographic photograph of Z-X; (c) Metallographic photograph of Al

    图  2  Z-X粉体能谱测试及Mapping数据:(a) Z-X粉体的能谱图;(b) Z-X的面扫元素图;(c) Sr在(b)图中的分布

    Figure  2.  Z-X powder energy spectrum test and Mapping data: (a) Energy spectra of Z-X powder; (b) Surface-swept element diagram of Z-X; (c) Distribution of Sr in (b)

    图  3  Sr元素等离激元振动模型

    Figure  3.  Plasma primitive vibration model of Sr element

    图  4  未球磨粉体400~760 nm可见光反射率曲线

    Figure  4.  Visible light reflectance curve at 400−760 nm of non-ball-milled powder

    图  5  不同球磨时间下Z-X的XRD衍射强度数据:(a) 5 h;(b) 10 h;(c) 15 h;(d) 20 h

    Figure  5.  XRD diffraction intensity of Z-X under different ball milling time: (a) 5 h; (b) 10 h; (c) 15 h; (d) 20 h

    图  6  不同球磨时间下的Z-X样品SEM测试:(a) 0 h;(b) 5 h;(c) 10 h;(d) 15 h;(e) 20 h

    Figure  6.  SEM of Z-X under different ball milling time: (a) 0 h; (b) 5 h; (c) 10 h; (d) 15 h; (e) 20 h

    图  7  不同球磨时间下的纯铝样品SEM测试:(a) 0 h;(b) 5 h;(c) 10 h;(d) 15 h;(e) 20 h

    Figure  7.  SEM of Al under different ball milling time: (a) 0 h; (b) 5 h; (c) 10 h; (d) 15 h; (e) 20 h

    图  8  Z-X和纯铝颜填料的发射率及光泽度随球磨时间的变化

    Figure  8.  Variation of emissivity and glossiness with ball milling time for Z-X and Al fillers

    表  1  块材发射率及光泽度等测试数据

    Table  1.   Test data of block emissivities and glossiness

    Sample Emissivities Glossiness (60°) ωp/(1015 rad/s) ωp/(1013 rad/s)
    Z-X 0.145 10.9 21.73[19] 10.81[19]
    Al 0.128 15.2 22.42[19] 12.43[19]
    下载: 导出CSV
  • [1] 周亮, 许卫东, 张月, 等. 低发射率材料红外隐身效果研究[J]. 电子技术, 2021, 50(7): 46-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DZJS202107017.htm

    ZHOU L, XU W D, ZHANG Y, et al. Research on the infrared stealth effect of low emissivity materials[J]. Electronics, 2021, 50(7): 46-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DZJS202107017.htm
    [2] 冯利利, 刘一曼, 姚琳, 等. 基于红外隐身及多波段兼容隐身材料[J]. 化学进展, 2021, 33(6): 1044-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ202106013.htm

    FENG L L, LIU Y M, YAO L, et al. Based on infrared stealth and multi-band compatible stealth materials[J]. Advances in Chemistry, 2021, 33(6): 1044-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ202106013.htm
    [3] 董海龙, 汪家春, 曾宇润, 等. 红外低发射率隐身涂层对太赫兹波的反射光谱研究[J]. 光谱学与光谱分析, 2019, 39(10): 3007-3012. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201910005.htm

    DONG H L, WANG J C, ZENG Y R, et al. Study on the reflection spectra of terahertz waves by infrared low-emissivity stealth coatings[J]. Spectroscopy and Spectral Analysis, 2019, 39(10): 3007-3012. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201910005.htm
    [4] Kim J Y, Park C G, Hahn J W. Metal-semiconductor-metal metasurface for multiband infrared stealth technology using camouflage color pattern in visible range[J]. Advanced Optical Materials, 2022, 10(6): 507-509.
    [5] ZHAO H L, GUO D B, SHENG T Y, et al. Infrared emissivity properties of infrared stealth coatings prepared by water-based technologies[J]. Optical Materials Express, 2016, 6(12): 99-101.
    [6] HU R, WANG X Y. Analysis of several key parameters in the design of infrared stealth coating[C]//MATEC Web of Conferences, 2016, 61(3): 13-15.
    [7] JUAN Z, JIANG Y, LIANG Y J, Pei L. Analysis of the composition of infrared stealth coating and the influence factors of its emissivity[J]. Advanced Materials Research, 2014, 31(8): 926-930.
    [8] LI E B, YU B, DONG H Y. Infrared radiation and thermal properties of Al-doped SrZrO3 perovskites for potential infrared stealth coating materials in the high-temperature environment[J]. Ceramics International, 2021, 47(16): 42-49.
    [9] 徐飞凤, 徐国跃, 谭淑娟, 等. 8~14 μm波段低红外发射率与低光泽度兼容涂层的制备方法初探[J]. 兵器材料科学与工程, 2011, 34(4): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201104007.htm

    XU F F, XU G Y, TAN S J, et al. A preliminary study on the preparation method of 8~14 μm band compatible coatings with low infrared emissivity and low gloss[J]. Ordnance Materials Science and Engineering, 2011, 34(4): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201104007.htm
    [10] 李静, 徐国跃, 郭腾超, 等. 铝粉的漂浮态对红外低发射率涂层耐腐蚀性能的影响[J]. 兵器材料科学与工程, 2019, 42(6): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201906015.htm

    LI J, XU G Y, GUO T C, et al. Effect of the floating state of aluminum powder on the corrosion resistance of infrared low emissivity coatings[J]. Ordnance Materials Science and Engineering, 2019, 42(6): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201906015.htm
    [11] LIU Y, YAO G Z, ZHAO L L. Visible light stealth based on 2D holographic antireflection coatings[J]. Academy of Armored Forces Engineering (China), 2014, 9(2): 73-77.
    [12] SUN G, LIU S, WANG W. Real-time target detection technology of large view-field infrared image based on multicore DSP parallel processing[C]//Proc. of SPIE, 2013, 89(7): 8-9.
    [13] YAN X, WANG L, QIAN X Y. Preparation and characterization of low infrared emissive aluminum/waterborne acrylic coatings[J]. Coatings, 2020, 10(1): 13-21.
    [14] YAN X, WANG L. Preparation and performance of a waterborne UV/Al low infrared emissivity coating[J]. Applied Sciences, 2020, 10(18): 14-23.
    [15] YAN X, CHANG Y, QIAN X. The properties of an aluminum/UV-curable, infrared, low-emissivity coating modified by nano-silica slurry[J]. Coatings, 2020, 10(4): 38-42.
    [16] YAN X. Effect of different color paste on properties of fluorine resin/aluminum infrared low emissivity coating[J]. Coatings, 2020, 10(1): 66-70. doi:  10.3390/coatings10010066
    [17] Farooq M, Hutchins M. Optical properties of higher and lower refractive index composites in solar selective coatings[J]. Solar Energy Materials and Solar Cells, 2002, 71(1): 73-83. doi:  10.1016/S0927-0248(01)00045-9
    [18] 张铎, 晋琦, 李维鸽, 等. 球磨分散和超声分散碳纳米管强化天然橡胶性能对比[J]. 应用化工, 2022, 51(4): 971-975. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG202204014.htm

    ZHANG D, JIN Q, LI W G, et al. Comparison of the properties of ball-milled dispersed and ultrasonically dispersed carbon nanotubes to enhance natural rubber[J]. Applied Chemicals, 2022, 51(4): 971-975. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG202204014.htm
    [19] 匡鹏, 李益文, 魏小龙, 等. 失效红外低发射率涂层发射率测量及分析[J]. 空军工程大学学报(自然科学版), 2020, 21(6): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC202006005.htm

    KUANG P, LI Y W, WEI X L, et al. Emissivity measurement and analysis of failed infrared low emissivity coatings[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21(6): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC202006005.htm
    [20] HU C, XU G Y, SHEN X M. Preparation and characteristics of thermal resistance polysiloxane/Al composite coatings with low infrared emissivity[J]. Journal of Alloys and Compounds, 2009, 486(1): 371-375.
    [21] 何云飞, 徐晨, 徐国跃, 等. 低发射率涂层与超材料吸波体兼容性能的研究[J]. 兵器材料科学与工程, 2019, 42(2): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201902015.htm

    HE Y F, XU C, XU G Y, et al. Study on the compatibility of low emissivity coatings with metamaterial absorbers[J]. Ordnance Materials Science and Engineering, 2019, 42(2): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201902015.htm
    [22] 谷清杨, 冯丽. 无机化学[M]. 北京: 化学工业出版社, 2008: 10-12.

    GU Q Y, FENG L. Inorganic Chemistry[M]. Beijing: Chemical Industry Press, 2008: 10-12.
    [23] YU T T, CHENG X L, ZHANG X F, et al. Highly sensitive H2S detection sensors at low temperature based on hierarchically structured NiO porous nanowall arrays[J]. Journal of Materials Chemistry A, 2015, 3(22): 11991-11999. doi:  10.1039/C5TA00811E
    [24] GAO S S, AN Q D, XIAO Z Y, et al. Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption[J]. Rsc. Advances, 2018, 8(34): 19011-19023. doi:  10.1039/C8RA00913A
    [25] 张川, 夏书标, 舒波, 等. 铝银浆制备中助剂的作用机理研究[J]. 金属功能材料, 2006, 13(3): 38-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGC200603010.htm

    ZHANG C, XIA S B, SHU B, et al. Study on the mechanism of action of additives in the preparation of aluminum-silver paste[J]. Metal functional materials, 2006, 13(3): 38-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGC200603010.htm
    [26] TAN X X, CHEN J, LI J X. A thin and optically transparent infrared-radar compatible stealth structure with low emissivity and broadband absorption[J]. Journal of Physics D: Applied Physics, 2022, 55(7): 897-905.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  11
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-22
  • 修回日期:  2022-08-23
  • 刊出日期:  2024-04-20

目录

    /

    返回文章
    返回