留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非制冷红外探测器陶瓷封装结构优化及可靠性分析

刘继伟 王金华 孙俊伟 胡汉林 陈文礼

刘继伟, 王金华, 孙俊伟, 胡汉林, 陈文礼. 非制冷红外探测器陶瓷封装结构优化及可靠性分析[J]. 红外技术, 2023, 45(1): 77-83.
引用本文: 刘继伟, 王金华, 孙俊伟, 胡汉林, 陈文礼. 非制冷红外探测器陶瓷封装结构优化及可靠性分析[J]. 红外技术, 2023, 45(1): 77-83.
LIU Jiwei, WANG Jinhua, SUN Junwei, HU Hanlin, CHEN Wenli. Ceramic Package Structure Optimization and Reliability Analysis for Uncooled Infrared Detectors[J]. Infrared Technology , 2023, 45(1): 77-83.
Citation: LIU Jiwei, WANG Jinhua, SUN Junwei, HU Hanlin, CHEN Wenli. Ceramic Package Structure Optimization and Reliability Analysis for Uncooled Infrared Detectors[J]. Infrared Technology , 2023, 45(1): 77-83.

非制冷红外探测器陶瓷封装结构优化及可靠性分析

详细信息
    作者简介:

    刘继伟(1993-),男,硕士,研发工程师,研究方向为非制冷红外探测器封装设计。E-mail: ljw_1717@163.com

  • 中图分类号: TN215

Ceramic Package Structure Optimization and Reliability Analysis for Uncooled Infrared Detectors

  • 摘要: 陶瓷封装是非制冷红外探测器最主流的封装形式,封装的低成本、小型化和高可靠性是发展方向。在某款陶瓷封装探测器结构的基础上,提出一种优化结构,优化后成本降低约5%、体积缩小约30%。基于ANSYS Workbench有限元分析软件,从网格数量无关性验证出发,分析了非制冷红外探测器陶瓷封装原始结构和优化结构各组件在10.2G随机振动环境和500g半正弦波冲击振动环境的最大等效应力和最大形变,结果显示两种结构均满足可靠性要求。在此基础上,本文对优化结构红外窗口的不同材料和不同厚度进行了500g半正弦波冲击振动环境可靠性仿真,结果表明:0.3 mm~1.0 mm厚度锗窗口和硅窗口均满足可靠性要求,最大等效应力和最大形变与窗口厚度呈负相关,相同厚度的红外窗口,硅窗口比锗窗口可靠性表现更好。本文的研究为非制冷红外探测器陶瓷封装形式的后续结构设计和仿真计算提供了参考。
  • 图  1  陶瓷探测器原始结构模型

    Figure  1.  Original structure model of ceramic detector

    图  2  陶瓷探测器优化结构模型

    Figure  2.  Optimized structure model of ceramic detector

    图  3  网格数量无关性验证

    Figure  3.  Grid number independence verification

    图  4  随机振动功率谱曲线

    Figure  4.  Random vibration power spectrum curve

    图  5  半正弦波形函数

    Figure  5.  Half sine waveform function

    图  6  随机振动环境计算结果

    Figure  6.  Results of random vibration environment calculation

    图  7  半正弦波冲击振动环境计算结果

    Figure  7.  Calculation results of half sine wave impact vibration environment

    图  8  半正弦波冲击振动环境对不同材料红外窗口的影响

    Figure  8.  Influence of half sinusoidal shock vibration environment on infrared windows of different materials

    表  1  某款陶瓷红外探测器优化前后各组件及整体尺寸参数

    Table  1.   The components and overall size parameters of a ceramic infrared detector before and after optimization

    Components Size(l×w×h)/(mm×mm×mm)
    Original structure Windows 15.9×14.5×0.7
    Kovar 20.2×18.8×0.4
    Housing 22×22×2.9
    Overall size 22×22×8.03
    Optimization structure Windows 20.3×16.7×0.7
    Housing 22×19×2.9
    Overall size 22×19×6.45
    下载: 导出CSV

    表  2  各组件材料参数

    Table  2.   Material parameters of each component

    Components Density ρ/(g·cm-3) Poisson's ratio μ Elasticity modulus E/GPa
    Windows -Ge 5.3 0.3 130
    Kovar 8.2 0.27 157
    Housing 3.6 0.23 310
    Chip 2.3 0.26 170
    Pin 8.2 0.37 147
    下载: 导出CSV

    表  3  各组件随机振动计算结果

    Table  3.   Calculation results of random vibration of each component

    Components Von mises stress -3σ/MPa Deformation X-3σ/nm Deformation Y-3σ/nm Deformation Z-3σ/nm
    Original structure Windows 0.15 6.0 5.1 40
    Kovar 0.37 6.5 5.3 18
    Housing 0.41 4.7 0.37 8.3
    Chip 0.1 2.1 0.19 8.0
    Pin 1.0 1.2 0.75 1.4
    Optimization structure Windows 0.18 4.1 3.4 35
    Housing 0.49 3.3 2.7 9.1
    Chip 0.95 1.9 1.3 9.1
    Pin 0.94 1.1 0.54 0.84
    下载: 导出CSV
  • [1] Rogalski A, Martyniuk P, Kopytko M. Challenges of small-pixel infrared detectors: a review [J]. Reports on Progress in Physics, 2016, 79(4): 046501. doi:  10.1088/0034-4885/79/4/046501
    [2] Fisette B, Tremblay M, Oulachgar H, et al. Novel vacuum packaged 384×288 broadband bolometer FPA with enhanced absorption in 3-14μm wavelength[C]//SPIE Defense + Security, 2017: 101771R.
    [3] 王强, 张有刚. 非制冷红外焦平面探测器封装技术研究进展[J]. 红外技术, 2018, 40(9): 837-842. http://hwjs.nvir.cn/article/id/hwjs201809002

    WANG Q, ZHANG Y G. Research progress of the packaging techniques for uncooled infrared focal plane arrays[J]. Infrared Technology, 2018, 40(9): 837-842. http://hwjs.nvir.cn/article/id/hwjs201809002
    [4] Dumont G, Rabaud W, Yon J J, et al. Current progress on pixel level packaging for uncooled IRFPA[C]//Infrared Technology & Applications XXXVIII. International Society for Optics and Photonics, 2012: 83531I.
    [5] 余黎静, 唐利斌, 杨文运, 等. 非制冷红外探测器研究进展(特邀)[J]. 红外与激光工程, 2021, 50(1): 71-85. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202101010.htm

    YU L J, TANG L B, YANG W Y, et al. Research progress of uncooled infrared detectors(Invited) [J]. Infrared and Laser Engineering, 2021, 50(1): 71-85. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202101010.htm
    [6] DRS. Products[EB/OL]. (2021-12-1)[2021-12-30]. https://www.leonardodrs.com/media/13691./2020_u6160_lcc_mr_2012-01-481_rev08.pdf.
    [7] Lynred. Products[EB/OL]. (2021-12-1)[2021-12-30]. https://lynred.com/products/pico640s.
    [8] LI T, ZUO Z X, LIAO R D. Meshing Method of high precision FEM in structural simulations [J]. Chinese Journal of Mechanical Engineering, 2009, 45(6): 304-308. doi:  10.3901/JME.2009.06.304
    [9] 国防科学技术工业委员会. 军用设备环境试验方法冲击试验[S]. GJB150.18-86, 北京: 国防科学技术工业委员会军用标准化中心, 1986.

    National Defense Science, Technology and Industry Commission. Environmental test methods for military equipments--shock test[S]. GJB150. 18-86, Beijing: China--Military Standardization Center of national defense science, technology and Industry Commission, 1986.
    [10] 中国人民解放军总装备部. 微电子器件试验方法和程序[S]. GJB 548B-2005, 北京: 总装备部军标出版发行部, 2005.

    The Chinese People's Liberation Army General Armaments Department. Test methods and procedures for microelectronic device[S]. GJB 548B-2005, Beijing: The Chinese People's Liberation Army General Armaments Department Military Standard Publication Distribution Department, 2005: 113-254.
    [11] Yazdi N. Silicon as a mechanical material[C]//Proceedings of the IEEE, 1982: 420-457.
    [12] AZOM. Supplier Data-Germanium (Ge) (Goodfellow)[EB/OL]. (2022-2-20)[2022-2-28]. https://www.azom.com/properties.aspx?ArticleID=1837.
    [13] 卢健钊. 某星载天线的抗力学环境设计与动态性能分析[J]. 环境技术, 2021, 39(5): 6. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJJ202105011.htm

    LU J Z. Design and dynamic properties analysis of a satellite -borne antenna under mechanical environment[J]. Environmental Technology, 2021, 39(5): 6. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJJ202105011.htm
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  108
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-25
  • 修回日期:  2022-03-18
  • 刊出日期:  2023-01-20

目录

    /

    返回文章
    返回