留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非平衡模式的碲镉汞高工作温度探测器

俞见云 孔金丞 覃钢 杨晋 宋林伟 丛树仁 李艳辉

俞见云, 孔金丞, 覃钢, 杨晋, 宋林伟, 丛树仁, 李艳辉. 基于非平衡模式的碲镉汞高工作温度探测器[J]. 红外技术, 2023, 45(1): 15-22.
引用本文: 俞见云, 孔金丞, 覃钢, 杨晋, 宋林伟, 丛树仁, 李艳辉. 基于非平衡模式的碲镉汞高工作温度探测器[J]. 红外技术, 2023, 45(1): 15-22.
YU Jianyun, KONG Jincheng, QIN Gang, YANG Jin, SONG Linwei, CONG Shuren, LI Yanhui. High Operation Temperature Non-equilibrium Photovoltaic HgCdTe Devices[J]. Infrared Technology , 2023, 45(1): 15-22.
Citation: YU Jianyun, KONG Jincheng, QIN Gang, YANG Jin, SONG Linwei, CONG Shuren, LI Yanhui. High Operation Temperature Non-equilibrium Photovoltaic HgCdTe Devices[J]. Infrared Technology , 2023, 45(1): 15-22.

基于非平衡模式的碲镉汞高工作温度探测器

基金项目: 

基础加强计划技术领域项目 2019-JCJQ-JJ527

详细信息
    作者简介:

    俞见云(1990-),男,云南曲靖人,工程师,硕士研究生,研究方向是光电材料。E-mail: y976321338@163.com

    通讯作者:

    孔金丞(1979-),男,云南南华人,研究员级高级工程师,博士生导师,主要从事光电材料与器件研究。E-mail: Kongjincheng@163.com

  • 中图分类号: TN215

High Operation Temperature Non-equilibrium Photovoltaic HgCdTe Devices

  • 摘要: 本文回顾了当前国内外高工作温度碲镉汞红外探测器的技术路线和相应的器件性能,在碲镉汞器件暗电流的温度特性分析的基础上,讨论了基于非平衡工作模式的碲镉汞探测器的基本原理、器件结构设计和暗电流机制,探讨了吸收层全耗尽碲镉汞器件性能与器件结构参数、材料晶体质量的关系,明确了其技术要点和难点,展望了碲镉汞高工作温度器件技术的发展趋势。
  • 图  1  不同工作模式碲镉汞器件能带示意图: (a) 传统非俄歇抑制型p-on-n; (b) 俄歇抑制型; (c) 深度俄歇抑制型; (d) 全耗尽型

    Figure  1.  Comparison of the operation of a conventional p-on-n HgCdTe diode (a) Auger-suppressed diode (b) Auger-suppressed diode with current below Rule 07 (c) and fully-depleted P-ν-N diode at the radiative limit (d)

    图  2  排斥结电子(实线)和空穴(虚线)浓度分布

    Figure  2.  Electron concentration (solid) and hole concentration (dashed) for a n+ν excluding structure

    图  3  不同浓度下实现碲镉汞中波5 μm吸收层全耗尽所需偏压

    注:中间插图为特定掺杂浓度下实现全耗尽需要的偏压

    Figure  3.  Calculated reverse voltage versus doping concentration required to deplete a 5 μm-thick MWIR HgCdTe absorber.

    Inset: absorber depletion thickness versus reverse bias and selected doping concentration

    图  4  截止波长10 μm的俄歇抑制p-on-n探测器暗电流密度随温度变化曲线

    Figure  4.  Auger-suppressed dark current density for a 10 μm cutoffdetector versus temperature and doping

    图  5  不同组分下Law 19与Rule 07计算得到暗电流密度随温度变化曲线

    Figure  5.  Calculated current density versus temperature using Law 19 and Rule 07

    图  6  全耗尽型器件暗电流与其他体系探测器暗电流对比

    Figure  6.  Calculated current density of fully depleted device versus 1/(λcT) products

    图  7  国内主要研究机构报道高温碲镉汞器件性能

    Figure  7.  NETD versus temperature reported by major domestic reserch institutions

    表  1  国外主流公司碲镉汞HOT探测器产品[27-30]

    Table  1.   High operating temperature IRFPAS of MCT from foreign companies

    Company Lynred(Sofradir) AIM Selex ES LEONARDO- DRS
    Product GALATEA MW HiPIR-Engine Firefly Camera ZAFIRO640® MICRO
    Array format 640×512 1024×768 640×512 640×480
    Tech route p-on-n p-on-n P+/ν(π)/N+ P+/P-(N-)/N+
    Detector pitch/μm 15 10 16 12
    Spectral response/μm 3.6~4.2 3.4~4.8 3.7~4.95 3.4~4.8
    Operating temperature/K 150 160 160 160
    Well capcity/Me- ~2.3 ~4 ~7 ~7.7
    Weight/g 230 360 550 272
    Power steady state/W ~2.7@20℃ ~4@20℃ ~5 ~5@23℃
    F# 4/5.5 2.2/4 4 3.25/4
    Frame rate/Hz 60 50/60 60 30/60
    NETD/mK ~35(300K) ~20(300K) 25 ~25
    Operability >99.5% >99% - 99.5%
    Cooldown time/mins ~3@20℃ ~3@20℃ - 2.5@23℃
    下载: 导出CSV
  • [1] 褚君浩. 窄禁带半导体物理学[M]. 北京: 科学出版社, 2005.

    CHU Junhao. Narrow-gap semiconductor physics[M]. Beijing: Science Press, 2005.
    [2] 杨健荣. 碲镉汞材料物理与技术[M]. 北京: 国防工业出版社, 2012.

    YANG Jianrong. Physics and Technology of HgCdTe Materials[M]. Beijing: National Industry Press, 2012.
    [3] Rogalski Antoni, Martyniuk Piotr, Kopytko Małgorzata, et al. Trends in performance limits of the HOT infrared photodetectors[J]. Applied Sciences, 2021, 11(2): 501. doi:  10.3390/app11020501
    [4] 覃钢, 吉凤强, 夏丽昆, 等. 碲镉汞高工作温度红外探测器[J]. 红外与激光工程, 2021, 50(4): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202104003.htm

    QIN Gang, JI Fengqiang, XIA Likun, et al. HgCdTe high operation temperature infrared detectors[J]. Infrared and Laser Engineering, 2021, 50(4): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202104003.htm
    [5] Reibel Yann, Taalat R, Brunner A, et al. Infrared SWAP detectors: pushing the limits[C]//Proc. of SPIE, 2015, 9451: 945110-1.
    [6] Lutz H, Breiter R, Figgemeier H, et al. Improved high operating temperature MCT MWIR modules[C]//Proc. of SPIE, 2014, 9070: 90701D-1.
    [7] Eich D, WSchirmacher, SHanna, et al. Progress of MCT detector technology at AIM towards smaller pitch and lower dark current[J]. Journal of Electronic Materials, 2017, 46(9): 5448-5457. doi:  10.1007/s11664-017-5596-4
    [8] Rubaldo Laurent, Brunner Alexandre, Guinedor Pierre, et al. Recent advances in Sofradir IR on Ⅱ-Ⅵ photodetectors for HOT applications[C]//Quantum Sensing & Nano Electronics & Photonics Ⅷ, 2016: 9755.
    [9] Kopytko M, Jóźwikowski K, Martyniuk P, et al. Status of HgCdTe barrier infrared detectors grown by MOCVD in military university of technology[J]. Journal of Electronic Materials, 2016, 45(9): 4563-4573. doi:  10.1007/s11664-016-4702-3
    [10] Ashley T, Elliott C T, White A M. Non-equilibrium devices for infrared detection[C]//Proc. of SPIE, 1985: 0572.
    [11] Ashley T, Elliott C T, Harker AT. Non-equilibrium modes of operation for infrared detectors[J]. Infrared Physics, 1986, 26(5): 303-315. doi:  10.1016/0020-0891(86)90008-4
    [12] Lee D, Carmody M, Piquette E, et al. High-operating temperature HgCdTe: a vision for the near future[J]. Journal of Electronic Materials, 2016, 45(9): 4587-4595. doi:  10.1007/s11664-016-4566-6
    [13] Ashley T, Elliott C T, White A M. Infrared detection using minority carrier exclusion[C]//Proc. of SPIE, 1986, 588: 62-68. .
    [14] Schuster J, DeWames R E, Wijewarnasuriya P S. Dark currents in a fully-depleted LWIR HgCdTe P-on-n heterojunction: analytical and numerical simulations[J]. Journal of Electronic Materials, 2017, 46(11): 6295-6305. doi:  10.1007/s11664-017-5736-x
    [15] Rogalski Antoni, Kopytko Małgorzata, Martyniuk Piotr. Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photodiodes[J]. Applied Optics, 2018, 57(18): D11-D19. doi:  10.1364/AO.57.000D11
    [16] Donald Lee, Peter Dreiske, Jon Ellsworth, et al. Law 19: The ultimate photodiode performance metric[C]//Proc. of SPIE, 2018: 11407.
    [17] Tennant W E, Lee D, Zandian M, et al. MBE HgCdTe technology: A very general solution to IR detection, Descibrdby'Rule 07', a very convenient heuristic[J]. Electron. Mater. 2008, 37: 1406-1410. doi:  10.1007/s11664-008-0426-3
    [18] Tennant W E. "Rule 07" Revisited: Still a Good Heuristic Predictor of p/n HgCdTe Photodiode Performance[J]. Journal of Electronic Materials, 2010, 39(7): 1030-1035. doi:  10.1007/s11664-010-1084-9
    [19] Jóźwikowska A, Ciupa R, Markowska O, et al. Enhanced numerical design of HgCdTe MWIR HOT P+ νN+ photodiodes[C]//2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2019: 85-86.
    [20] Vallone M, Goano M, Bertazzi F, et al. Constraints and performance trade-offs in Auger-suppressed HgCdTe focal plane arrays[J]. Applied Optics, 2020, 59(17): E1-E8. doi:  10.1364/AO.385075
    [21] Gordon N T, Lees D J, Bowen G, et al. HgCdTe detectors operating above 200 K[J]. Journal of Electronic Materials, 2006, 35(6): 1140-1144. doi:  10.1007/s11664-006-0233-7
    [22] Pillans Luke, Baker Ian, McEwen R Kennedy. Ultra-low power HOT MCT grown by MOVPE for handheld applications[C]//Proc. of SPIE, 2014, 9070: 90701E-1.
    [23] Kinch M A, Schaake H F, Strong R L, et al. High operating temperature MWIR detectors[C]//Proc. of SPIE, 2010, 7660: 76602V-1.
    [24] Priyalal S Wijewarnasuriya, Emelie P Y, Arvind D'Souza, et al. Nonequilibrium operation of arsenic diffused long-wavelength infrared hgcdte photodiodes[J]. Journal of Electronic Materials, 2008, 37(9): 1283-1290. doi:  10.1007/s11664-008-0455-y
    [25] Madejczyk P, Gawron W, Piotrowski A, et al. Improvement in performance of high-operating temperature HgCdTe photodiodes[J]. Infrared Physics and Technology, 2011, 54(3): 310-315. doi:  10.1016/j.infrared.2010.12.036
    [26] Paul Jerram, James Beletic. Teledyne's high performance infrared detectors for space missions[C]//Proc. of SPIE, 2018, 11180: 111803D-1.
    [27] Péré-Laperne N, Berthoz J, Taalat R, et al. Latest developments of 10μm pitch HgCdTe diode array from the legacy to the extrinsic technology[C]//Proc. of SPIE, 2016, 9819: 545-557.
    [28] AIM Infrarot-Module GmbH. HiPIR-Engine HOT MCT 1024×768 10 μm Pitch IR Engine[M/OL][2019-03-09]. http://www.Aim-ir.com/fileadmin/files/Data_Sheets_Security/Modules/01_HotCube/2018_AIM_datenblatt_A4_HOT-MCT-1024_engl.pdf
    [29] Pillans L, Harmer J, Edwards T. Firefly: a HOT camera core for thermal imagers with enhanced functionality[C]//Proc. of SPIE, 2015, 9451: 270-280.
    [30] Shafer T, Torres-Valladolid R, Burford R, et al. High operating temperature (HOT) midwave infrared (MWIR) 6 µm pitch camera core performance and maturity[C]//Proc. of SPIE, 2022, 12107: 215-229.
    [31] 周连军, 韩福忠, 白丕绩, 等. 高温碲镉汞中波红外探测器的国内外进展[J]. 红外技术, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002

    ZHOU Lianjun, HAN Fuzhong, BAI Piji, et al. Review of HOT MW Infrared Detector Using MCT Technology[J]. Infrared Technology, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002
    [32] 陈慧卿, 史春伟, 胡尚正, 等. 中波碲镉汞p-on-n高温工作技术研究[J]. 激光与红外, 2020, 50(4): 435-438. doi:  10.3969/j.issn.1001-5078.2020.04.009

    CHEN Huiqin, SHI Chunwei, HU Shangzheng, et al. Study on p-on-n technology of the MWIR HgCdTe fot HOT Work[J]. LASER & INFRARED, 2020, 50(4): 435-438. doi:  10.3969/j.issn.1001-5078.2020.04.009
    [33] 刘伟华, 刘帆, 吴正虎, 等. 12μm像元间距1280×1024碲镉汞中波红外焦平面探测器的制备及性能研究[J]. 红外, 2020, 41(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202003002.htm

    LIU Weihua, LIU Fan, WU Zhenghu, et al. Study on Preparation and Performance of 1280×1024@12 μm HgCdTe MWIR Focal Plane Detectors[J]. Infrared, 2020, 41(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202003002.htm
    [34] Rogalski A, Martyniuk P. Midwavelength infrared nBn for HOT detectors[J]. Journal of Electronic Material, 2014, 43(8): 2963-2969. doi:  10.1007/s11664-014-3161-y
    [35] David Z Ting, Alexander Soibel, Arezou Khoshakhlagh, et al. Theoretical analysis of nBn infrared photodetectors[J]. Opt. Eng., 2017, 56(9): 091606.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  30
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15
  • 修回日期:  2022-04-11
  • 刊出日期:  2023-01-20

目录

    /

    返回文章
    返回