留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MEMS工艺的微型制冷器

童欣 陈晓屏 李家鹏 夏明 槐阳 陈俊元

童欣, 陈晓屏, 李家鹏, 夏明, 槐阳, 陈俊元. 基于MEMS工艺的微型制冷器[J]. 红外技术, 2021, 43(2): 104-109.
引用本文: 童欣, 陈晓屏, 李家鹏, 夏明, 槐阳, 陈俊元. 基于MEMS工艺的微型制冷器[J]. 红外技术, 2021, 43(2): 104-109.
TONG Xin, CHEN Xiaoping, LI Jiapeng, XIA Ming, HUAI Yang, CHEN Junyuan. Micro-coolers Based on MEMS Technology[J]. Infrared Technology , 2021, 43(2): 104-109.
Citation: TONG Xin, CHEN Xiaoping, LI Jiapeng, XIA Ming, HUAI Yang, CHEN Junyuan. Micro-coolers Based on MEMS Technology[J]. Infrared Technology , 2021, 43(2): 104-109.

基于MEMS工艺的微型制冷器

详细信息
    作者简介:

    童欣(1992-),男,博士研究生,主要从事微型节流制冷器的研究。E-mail:291740057@qq.com

  • 中图分类号: TP39

Micro-coolers Based on MEMS Technology

  • 摘要: 微机电系统MEMS(micro-electro-mechanical system)是一种集合了微电子与机械工程技术的新型高科技装置,其制造工艺可以进行最小至纳米尺度的加工以及高度集成化的微型制造。其产品微小体积、高度集成化以及高性能高产热的特性也决定了其需要匹配相应的制冷解决方案,本文重点阐述了基于MEMS制造工艺并同时应用于MEMS产品的微型制冷器的工作原理、性能及发展趋势。分别分析了微型半导体制冷器以及微型节流制冷器各自的优势和不足,对微型制冷器的未来发展提出了建议。
  • 图  1  微型半导体制冷器显微照片

    Figure  1.  Micrograph of micro semiconductor cooler

    图  2  悬空结构微型半导体制冷器示意图

    Figure  2.  Schematic diagram of suspended micro semiconductor cooler

    图  3  加工于柔性基片的微型半导体制冷器

    Figure  3.  Micro semiconductor cooler on a flexible membrane

    图  4  适配中红外激光系统的二级微型半导体制冷器

    Figure  4.  Two stage micro semiconductor cooler for a mid-IR laser system

    图  5  微型节流制冷器槽道示意图

    Figure  5.  Channels of micro JT cooler

    图  6  点阵结构微型节流制冷器

    Figure  6.  Micro JT cooler with pillar-structure

    图  7  多级微型节流制冷器

    Figure  7.  Multi-stage micro JT cooler

    图  8  微型节流/半导体混合制冷器示意图

    Figure  8.  Schematic of JT/semiconductor hybrid micro cooler

    图  9  快速启动微型节流制冷器

    Figure  9.  Fast cooldown micro JT cooler

    图  10  基于MEMS工艺的低温换热器

    Figure  10.  Cryogenic heat exchanger based on MEMS technology

  • [1] 薛淞元. 微机电系统科学与技术发展趋势[J]. 数字技术与应用, 2018, 36(11): 212-213. https://www.cnki.com.cn/Article/CJFDTOTAL-SZJT201811116.htm
    [2] Esashi M, Ono T. Micro-nano electromechanical system by bulk silicon micromachining[J]. Optics and Precision Engineering, 2002, 10(6): 608-613. http://www.cnki.com.cn/Article/CJFDTotal-GXJM200206015.htm
    [3] 刘少波. 新型MEMS致冷器研究[J]. 电子工业专用设备, 2004, 108: 21-25. doi:  10.3969/j.issn.1004-4507.2004.01.006
    [4] 吴雷, 高明, 张涛, 等. 热电制冷的应用与优化综述[J]. 制冷学报, 2018, 11(8): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLXB201906001.htm
    [5] 陈云飞. 基于微纳结构的制冷器[J]. 东南大学学报, 2006, 36(3): 356-360. doi:  10.3321/j.issn:1001-0505.2006.03.004
    [6] 阮雷, 吴云峰, 陈镇龙, 等. 半导体超晶格微制冷器的研究进展[J]. 红外, 2007, 28(10): 1-5. doi:  10.3969/j.issn.1672-8785.2007.10.001
    [7] 宫昌萌. 基于超晶格的微型热电制冷器[D]. 南京: 东南大学, 2006.
    [8] Christofferson J, Vashaee D, Shakouri A. Thermal characterization of thin film superlattice micro refrigerators[C]//IEEE SEMI-THERM Symposium, 2000: 49-54.
    [9] Christofferson J, Ezzahri Y, Shakouri A. Transient thermal imaging of pulsed- operation superlattice micro-refrigerators[C]// IEEE SEMI- THERM Symposium, 2009: 45-49.
    [10] ZENG Gehong, FAN Xiaofeng, LaBounty C, et al. Cooling power density of SiGe/Si superlattice micro refrigerators[J]. Materials Research Society, 2004, 793: 221-227. http://journals.cambridge.org/article_S1946427400103835
    [11] YAO D J, KIM C J, CHEN G. MEMS thermoelectric micro- cooler[C]//International Conference on Thermoelectric, 2001: 401-404.
    [12] Goncalves L M, Couto C, Correia J H. Flexible thin-film planar peltier microcooler[C]//International Conference on Thermoelectrics, 2006: 327-331.
    [13] Ronggui Y, GANG C, Snyder G J, et al. Multistage thermoelectric micro coolers[C]//Inter Society Conference on Thermal Phenomena, 2002: 323-329.
    [14] 刘东立, 曹海山, 刘霄, 等. 微型JT制冷机实验研究进展[C]//低温工程大会, 2019: 199-204.

    LIU Dongli, CAO Haishan, LIU Xiao, et al. Experimental development of microminiature JT refrigerators[C]//Cryogenic Engineering Conference, 2019: 199-204.
    [15] Little W A. Design considerations for microminiature refrigerators using laminar flow heat exchangers[J]. NSB Speaial Publication, 1981, 607: 154-161. http://www.researchgate.net/publication/285264211_Design_Considerations_for_Microminiature_Refrigerators_Using_Laminar_Flow_Heat_Exchangers
    [16] FAN Zhonghui, D Harrison. Micromachining of capillary electro- phoresis injectors and separators on glass chips and evaluation of flow at capillary intersections[J]. Analytical Chemistry, 1994, 66: 177-184. doi:  10.1021/ac00073a029
    [17] P P P M Lerou, G C F Venhorst, C F Berends, et al. Fabrication of a micro cryogenic cold stage using MEMS-technology[J]. Journal of Micromechanics and Microengineering, 2006, 16: 1919-1925. doi:  10.1088/0960-1317/16/10/002
    [18] CAO H S, Mudaliar A V, Derking J H, et al. Design and optimization of a two-stage 28 K Joule-Thomson microcooler[J]. Cryogenics, 2012, 52: 51-57. doi:  10.1016/j.cryogenics.2011.11.003
    [19] CAO H S, Vanapalli S, Holland H J, et al. A micromachined Joule-Thomson cryogenic cooler with parallel two-stage expansion[J]. International Journal of Refrigeration, 2016, 69: 223-231. doi:  10.1016/j.ijrefrig.2016.06.023
    [20] CAO H S, Vanapalli S, Holland H J, et al. Characterization of a thermoelectric Joule-Thomson hybrid microcooler[J]. Cryogenics, 2016, 77: 36-42. doi:  10.1016/j.cryogenics.2016.04.012
    [21] Little W A. Microminiature refrigeration[J]. American Institute of Physics, 1984: 661-680. doi:  10.1063/1.1137820
    [22] ZHU Weibin, J W Michael, F N Gregory, et al. A Si/Glass bulk -micromachined cryogenic heat exchanger for high heat loads: fabrication, test, and application results[J]. Journal of Microelectromechanical System, 2010, 19(1): 38-47. doi:  10.1109/JMEMS.2009.2034322
    [23] ZHU Weibin, Michael J W, Gregory F N, et al. A Joule-Thomson cooling system with a Si/Glass heat exchanger for 0.1-1 W heat loads[C]//Transducers, 2009: 2417-2420.
    [24] ZHU Weibin, Michael J W, Daniel W H, et al. Two approaches to micromachining Si heat exchanger for Joule-Thomson cryosurgical probes[C]//MEMS, 2007: 317-320.
    [25] ZHU Weibin, Michael J W, Gregory F N, et al. A perforated plate stacked Si/Glass heat exchanger with In-SITU temperature for Joule-Thomson coolers[C] //MEMS, 2008: 844-847.
    [26] Lerou P P P M, Brake H J M, Holland H J, et al. Insight into clogging of micromachined cryogenic coolers[J]. Applied Physics Letters, 2007, 90: 102-104. doi:  10.1063/1.2472194
    [27] Tsai H L, Le P T. Self-sufficient energy recycling of light emitter diode/thermoelectric generator module for its active-cooling application[J]. Energy Conversion and Management, 2016, 118: 170-178. doi:  10.1016/j.enconman.2016.03.077
    [28] LIN Shumin, MA Ming, WANG Jun, et al. Experiment investigation of a two-stage thermoelectric cooler under current pulse operation[J]. Applied Energy, 2016, 180: 628-636. doi:  10.1016/j.apenergy.2016.08.022
    [29] ZHAO Dongliang, TAN Gang. Experimental evaluation of a prototype thermoelectric system integrated with PCM (Phase Change Material) for space cooling[J]. Energy, 2014, 68(4): 658-666. http://www.ingentaconnect.com/content/el/03605442/2014/00000068/00000001/art00070
    [30] Derking J, Holland H, Lerou P, et al. Micromachined Joule-Thomson cold stages operating in the temperature range 80-250 K[J]. International Journal of Refrigeration, 2012, 35: 1200-1207. doi:  10.1016/j.ijrefrig.2012.01.008
  • 加载中
图(10)
计量
  • 文章访问数:  495
  • HTML全文浏览量:  82
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-25
  • 修回日期:  2021-01-08
  • 刊出日期:  2021-02-20

目录

    /

    返回文章
    返回