留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间用红外探测器拼接技术研究

吕玮东 邓旭光 王乾威 练敏隆 张九双 陈明 顾德宇 田大成

吕玮东, 邓旭光, 王乾威, 练敏隆, 张九双, 陈明, 顾德宇, 田大成. 空间用红外探测器拼接技术研究[J]. 红外技术, 2022, 44(10): 999-1008.
引用本文: 吕玮东, 邓旭光, 王乾威, 练敏隆, 张九双, 陈明, 顾德宇, 田大成. 空间用红外探测器拼接技术研究[J]. 红外技术, 2022, 44(10): 999-1008.
LYU Weidong, DENG Xuguang, WANG Qianwei, LIAN Minlong, ZHANG Jiushuang, CHEN Ming, GU Deyu, TIAN Dacheng. Infrared Detector Butted Technology for Space[J]. Infrared Technology , 2022, 44(10): 999-1008.
Citation: LYU Weidong, DENG Xuguang, WANG Qianwei, LIAN Minlong, ZHANG Jiushuang, CHEN Ming, GU Deyu, TIAN Dacheng. Infrared Detector Butted Technology for Space[J]. Infrared Technology , 2022, 44(10): 999-1008.

空间用红外探测器拼接技术研究

详细信息
    作者简介:

    吕玮东(1990-),男,博士,研究方向是低温光学技术。E-mail: lvweidongcasc@163.com

  • 中图分类号: TN219

Infrared Detector Butted Technology for Space

  • 摘要: 随着空间遥感相机性能的不断提升,采用更大规模、更多谱段的红外焦平面阵列是未来航天用红外探测器的发展趋势,以满足相机大视场、高分辨率及多光谱探测的能力。目前,单探测器模块的研制受到探测器材料、硅读出电路加工工艺的限制,探测器规模、分辨率、谱段数量等指标无法满足使用要求。因此,通过机械拼接或光学拼接的方式制备大规模、多谱段红外焦平面阵列是必须的工程途经。本文对航天工程用大规模、多谱段红外探测器拼接方式进行了对比分析,给出了各种常见拼接方式的特点,总结了关键技术和核心指标。
  • 图  1  红外探测器组件机械拼接原理

    Figure  1.  Mechanical splicing schematic diagram of infrared detector assembly

    图  2  红外探测器组件光学拼接原理图[2]

    Figure  2.  Optical splicing schematic diagram of infrared detector assembly[2]

    图  3  Raytheon公司探测器产品[3-6]

    Figure  3.  Raytheon Corporation detector products[3-6]

    图  4  Teledyne公司35个2k×2k碲镉汞拼接阵列[8]

    Figure  4.  Teledyne Corporation 35 2k×2k HgCdTe detector arrays[8]

    图  5  Selex公司8个HD1920×1080拼接阵列[9]

    Figure  5.  Selex Corporation 8 HD1920×1080 detector arrays[9]

    图  6  2048×16探测器拼接结构[10]

    Figure  6.  2048×16 detector splicing structure[10]

    图  7  1500×1探测器拼接结构[12]

    Figure  7.  1500×1 detector splicing structure[12]

    图  8  MTI焦平面组件结构[13]

    Figure  8.  MTI focal plane assembly structure[13]

    图  9  1500×2探测器拼接结构[14]

    Figure  9.  1500×2 detector splicing structure[14]

    图  10  中电十一所探测器产品[15]

    Figure  10.  NCRIEO Corporation detector products[15]

    图  11  2048×1探测器拼接结构[16]

    Figure  11.  2048×1 detector splicing structure[16]

    图  12  模块化封装探测器模块示意图

    Figure  12.  Schematic diagram of independent encapsulation module

    图  13  Raytheon公司ORION 2048×2048 InSb探测器[17]

    Figure  13.  Raytheon Corporation ORION 2048×2048 InSb detector[17]

    图  14  三边及四边可用于拼接结构[9]

    Figure  14.  Three sides and four sides can be used for splicing structures[9]

    图  15  公共基板作为引线与支撑[18]

    Figure  15.  Common substrate as lead and support[18]

    图  16  公共基板仅作为支撑[18]

    Figure  16.  The common substrate serves only as support[18]

    图  17  红外探测器结构

    Figure  17.  Infrared detector structure

    图  18  模块间的位置关系示意图

    Figure  18.  A diagram of the position between modules

    图  19  面阵两边、三边及四边用于拼接结构示意图[19]

    Figure  19.  The two sides, three sides and four sides of the detector array are used for stitching the schematic diagram[19]

    图  20  线列拼接重要边界示意图

    Figure  20.  Schematic diagram of linear array splicing of important boundaries

    图  21  模块化封装组成示意图[20]

    Figure  21.  Schematic diagram of independent package composition[20]

    图  22  面阵专用工装

    Figure  22.  Special tooling for focal plane array

    图  23  拼接工艺示意图

    Figure  23.  Schematic diagram of splicing process

    表  1  两种拼接特点对比

    Table  1.   Comparison of two butted technologies

    Comparison projects Optical butted Mechanical butted
    System complexity Complex :
    Multiple relay optical systems
    Multiple sets of focal plane refrigerator components
    Multiple refrigeration controllers and video circuits
    Simple :
    Relayless optical system
    1 set of focal plane refrigerator components
    1 set of refrigeration controller and video circuit
    Requirements for optical system Telecentric image space None
    Noise equivalent temperature difference High Low
    Response consistency Low High
    Focal plane butted accuracy Structure/system assembled required, low accuracy High
    Focusing structure Several sets 1 set
    下载: 导出CSV
  • [1] 刘兆军, 周峰, 李瑜. 航天光学遥感器对红外探测器的需求分析[J]. 红外与激光工程, 2008, 37(1): 25-29. doi:  10.3969/j.issn.1007-2276.2008.01.005

    LIU Z J, ZHOU F, LI Y. Demands analysis of IR detectors for space remote sensor[J]. Infrared and Laser Engineering, 2008, 37(1): 25-29. doi:  10.3969/j.issn.1007-2276.2008.01.005
    [2] 邱民朴, 马文坡. 空间红外推扫成像系统探测器光学拼接方法[J]. 航天返回与遥感, 2019, 40(6): 51-58. doi:  10.3969/j.issn.1009-8518.2019.06.007

    QIU M P, MA W P. Optical butting of linear infrared detector array for space pushbroom imaging systems[J]. Spacecraft Recovery and Remote Sensing, 2019, 40(6): 51-58. doi:  10.3969/j.issn.1009-8518.2019.06.007
    [3] Gert Finger, James W Beletic. Review of the state of infrared detectors for astronomy in retrospect of the June 2002 workshop on scientific detectors for astronomy[C]//Proc. of SPIE, 2003, 4841: 839-852.
    [4] Philippe Tnbolet, Philippe Chorier. Large infrared focal plane arrays for space applications[J/OL]. [2002-01]. https://www.researchgate.Net/publication/228975841_Large_Infrared_Focal_Plane_Arrays_for_Space_Applications.
    [5] Peter J Love, Alan W Hoffman, Ken J Ando, et al. 2K×2K HgCdTe detector arrays for VISTA and other applications[C]//Proc. of SPIE, 2004, 5499: 68-77.
    [6] Reinhold J Dorn, Gert Finger, Gotthard Huster, et al. The CRIRES InSb megapixel focal plane array detector mosaic[C]//Proc of SPIE, 2004, 5499: 510-517.
    [7] Hall D N B, Luppino G, Hodapp K W, et al. A 4K×4K HgCdTe astronomical camera enabled by the James Webb Space Telescope NIR detector development program[C]//Proc. of SPIE, 2004, 5499: 1-14.
    [8] Thomas Sprafke, James W Beletic. High-performance infrared focal plane arrays for space applications[J]. Optics and Photonics News, 2008, 19(6): 22-27. doi:  10.1364/OPN.19.6.000022
    [9] Thorne P, Gordon J, Hipwood L G, et al. 16 megapixel 12 μm array developments at Selex ES[C]//Proc. of SPIE, 2013, 8704: 87042M-1-87042M-9.
    [10] Tom Chuh, Markus Loose, David J Gulbransen, et al. Astronomy FPA advancements at Rockwell scientific[C]//Proc. of SPIE, 2006, 6265: 62652K-1-62652K-14.
    [11] M Zucker, I Pivnik, E Malkinson, et al. Long mid-wave infrared detector with time delayed integration[C]//Proc. of SPIE, 2003, 4820: 580-592.
    [12] Tribolet P, Chatard J P, Costa P, et al. Progress in HgCdTe homojunction infrared detectors[J]. Journal of Crystal Growth, 1998, 184-185: 1262-1271. doi:  10.1016/S0022-0248(97)00759-8
    [13] Robert W Besuner, Christopher J Bebek, Gunther M Haller, et al. A 260 megapixel visible/NIR mixed technology focal plane for space[C]//Proc. of SPIE, 2011, 8155: 81550D-1-81550D-14.
    [14] Michael Dahlin. Advanced focal plane array systems for next-generation scanning remote sensing instrument[C]// Proc. of SPIE, 2003, 4820: 406-417.
    [15] 王成刚, 东海杰, 刘泽巍, 等. "高分五号"卫星多谱段集成TDI线列红外探测器[J]. 航天返回与遥感, 2018, 39(3): 80-84. doi:  10.3969/j.issn.1009-8518.2018.03.009

    WANG C G, DONG H J, LIU Z W, et al. Development of multispectral TDI linear infrared detector for GF-5 satellite[J]. Spacecraft Recovery and Remote Sensing, 2018, 39(3): 80-84. doi:  10.3969/j.issn.1009-8518.2018.03.009
    [16] 李言谨, 陈路, 胡晓宁, 等. 长波红外2048元线列碲镉汞焦平面器件[J]. 红外与毫米波学报, 2009, 28(2): 90-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200902003.htm

    LI Y J, CHEN L, HU X N, et al. Long-wave infrared 2048-elements linear HgCdTe focal plane array[J]. Journal of Infrared and Millimeter Waves, 2009, 28(2): 90-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200902003.htm
    [17] Alan W Hoffman, Elizabeth Corrales, Peter J Love, et al. 2K×2K InSb for astronomy[C]//Proc. of SPIE, 2004, 5499: 59-67.
    [18] 王成刚, 东海杰. 超长线列碲镉汞红外探测器拼接方式对比分析[J]. 激光与红外, 2013, 43(8): 920-923. doi:  10.3969/j.issn.1001-5078.2013.08.016

    WANG C G, DONG H J. Butted manner analysis of long linear infrared focal plane detectors of MCT[J]. Laser and Infrared, 2013, 43(8): 920-923. doi:  10.3969/j.issn.1001-5078.2013.08.016
    [19] Thorne P, Weller H, Hipwood L G. 12 μm pixel pitch development for 3-side buttable megapixel MW FPAs[C]//Proc. of SPIE, 2012, 8353: 83532J-1-83532J-9.
    [20] Peter J Love Alan, Hoffman W, David J Gulbransen, et al. Large-format 0.85-2.5 micron HgCdTe detector arrays for low-background applications [C]// Proceeding of SPIE, 2004, 5167: 134-142.
    [21] 梅强, 曹学强, 张博文, 等. 空间光学相机焦面拼接热变形对图像配准影响[J]. 航天返回与遥感, 2021, 42(5): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202105005.htm

    MEI Q, CAO X Q, ZHANG B W, et al. Analysis of the effect of butting assembly thermal deformation on image registration[J]. Spacecraft Recovery and Remote Sensing, 2021, 42(5): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202105005.htm
    [22] 郭楠, 于波, 夏晨晖, 等. 空间光学相机焦面拼接基座高温度稳定性控制[J]. 航天返回与遥感, 2020, 41(4): 64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202004009.htm

    GUO N, YU B, XIA C H, et. Temperature control with high stability for the assembly base of space optical cameras[J]. Spacecraft Recovery and Remote Sensing, 2020, 41(4): 64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202004009.htm
    [23] 周峰, 刘冰, 王成刚, 等. 一种红外探测器超大面阵复合拼接方法: CN106813781A[P]. 2017.

    ZHOU F, LIU B, WANG C G, et. A Composite Splicing Method for Super Large Array of Infrared Detectors: CN106813781A[P]. 2017.
    [24] Rieke G H. NIRCam Detector Overview[EB/OL]. [2017-07-13]. https://jwst-docs.stsci.edu/jwst-near-infrared-camera/nircam-instrumentation/nir-cam-detector-overview.
  • 加载中
图(23) / 表(1)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  89
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-17
  • 修回日期:  2022-09-14
  • 刊出日期:  2022-10-20

目录

    /

    返回文章
    返回