留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cd饱和气氛退火对碲锌镉晶体导电类型转变界面的影响

袁绶章 赵文 孔金丞 姜军 赵增林 姬荣斌

袁绶章, 赵文, 孔金丞, 姜军, 赵增林, 姬荣斌. Cd饱和气氛退火对碲锌镉晶体导电类型转变界面的影响[J]. 红外技术, 2021, 43(6): 517-522.
引用本文: 袁绶章, 赵文, 孔金丞, 姜军, 赵增林, 姬荣斌. Cd饱和气氛退火对碲锌镉晶体导电类型转变界面的影响[J]. 红外技术, 2021, 43(6): 517-522.
YUAN Shouzhang, ZHAO Wen, KONG Jincheng, JIANG Jun, ZHAO Zenglin, JI Rongbin. Influence of Cd-rich Annealing on Position-dependent Conductivity Transition in Cd1-xZnxTe Crystal[J]. Infrared Technology , 2021, 43(6): 517-522.
Citation: YUAN Shouzhang, ZHAO Wen, KONG Jincheng, JIANG Jun, ZHAO Zenglin, JI Rongbin. Influence of Cd-rich Annealing on Position-dependent Conductivity Transition in Cd1-xZnxTe Crystal[J]. Infrared Technology , 2021, 43(6): 517-522.

Cd饱和气氛退火对碲锌镉晶体导电类型转变界面的影响

详细信息
    作者简介:

    袁绶章(1983-),男,云南泸西人,研究员,博士研究生,主要从事红外探测器材料与器件技术研究,E-mail:phelix@126.com

    通讯作者:

    姬荣斌(1967-),男,云南大理人,博士,研究员,博士研究生导师,主要从事半导体材料与器件研究,E-mail:454091787@qq.com

  • 中图分类号: TB34

Influence of Cd-rich Annealing on Position-dependent Conductivity Transition in Cd1-xZnxTe Crystal

  • 摘要: 在富Te生长条件下,通过垂直布里奇曼法制备的部分碲锌镉晶体内存在导电类型转变界面。采用富Te液相外延技术在含有导电类型转变界面的碲锌镉衬底上生长碲镉汞薄膜,制成的红外焦平面探测器响应图上存在明显的响应不均匀分界面。碲锌镉晶体的导电类型转变由缺陷类型的不同引起,为消除碲锌镉衬底的导电类型转变界面,提升碲镉汞红外焦平面的成像质量,对含有导电类型转变界面的碲锌镉晶体进行了Cd饱和气氛退火实验,研究了时间和温度等退火条件对晶体导电类型转变界面的影响,探讨了Cd间隙和Cd空位缺陷的形成机制,为晶体生长过程中的Cd空位缺陷抑制提出了解决思路。
  • 图  1  含有导电类型转变界面的碲锌镉晶体退火前后结果

    Figure  1.  Results of Cd0.96Zn0.04Te crystal dealing with annealing method which leads to a position-dependent transition from p- to n-type conductivity

    图  2  退火对碲锌镉晶体中的导电类型转变界面的影响

    Figure  2.  Influence of Cd-rich annealing on position-dependent conductivity transition in Cd1-xZnxTe

    图  3  碲锌镉晶体在退火前和后,导电类型转变界面两侧的红外光谱

    Figure  3.  IR transmission of Cd1-xZnxTe, as-grown and post-annealed by Cd-rich condition

    图  4  由生长在具有或者没有导电类型转变界面的碲锌镉衬底上的碲镉汞材料制成的红外焦平面响应图:(a) 有导电类型转变界面的情况;(b) 经退火消除导电类型转变界面的情况

    Figure  4.  Response map of IR FPA made of MCT grown on Cd1-xZnxTe substrates, with (a) or without (b) position-dependent conductivity transition

    图  5  碲锌镉晶体中的缺陷结合能

    Figure  5.  Binding energy of defects in Cd1-xZnxTe

  • [1] Gurgenian H K. Another source of MCT detectors[J]. Laser Focus World, 1992, 28: 51.
    [2] Reibel Y, Rublado L, Bonnouvrier G, et al. Latest developments in advanced MCT infrared cooled detectors[J]. Electro-Optical and Infrared Systems: Technology and Applications VⅢ, 2011: 8185: 818503. doi:  10.1117/12.797439.full
    [3] Reddy M, Peterson J M, Lofgreen D D, et al. HgCdTe growth on 6 cm×6 cm CdZnTe substrates for large-format dual-band infrared focal-plane arrays[J]. Journal of Electronic Materials, 2010, 39(7): 974-980. doi:  10.1007/s11664-010-1141-4
    [4] Johnson S M, James J B, Ahlgren W L, et al. Heteroepitaxial HgCdTe/ CdZnTe/Gaas/Si materials for infrared focal plane arrays[J]. Long -wavelength Semiconductor Devices, Materials, and Processes, 1991, 216: 141-146. http://journals.cambridge.org/article_S1946427400498295
    [5] SHENG F F, ZHOU C H, SUN S W, et al. Influences of Te-rich and Cd-rich precipitates of CdZnTe substrates on the surface defects of HgCdTe liquid-phase epitaxy materials[J]. J. Electron Mater, 2014, 43: 1397-1402. doi:  10.1007/s11664-014-3110-9
    [6] Yoshikawa M. Dislocations in Hg1−xCdxTe/Cd1−zZnzTe epilayers grown by liquid-phase epitaxy[J]. J. Appl. Phys. , 1988, 63: 1533-1540. doi:  10.1063/1.339937
    [7] Yoshikawa M. Dislocations in Hg1-xCdxTe/Cd1-zZnzTe epilayers grown by liquid-phase epitaxy[J]. J. Appl. Phys. , 1988, 63: 1533-1540. doi:  10.1063/1.339937
    [8] Sen S, Konkel W H, Tighe S J, et al. Crystal-growth of large-area single-crystal CdTe and CdZnTe by the computer-controlled vertical modified-Bridgman process[J]. J. Cryst Growth, 1988, 86: 111-117. doi:  10.1016/0022-0248(90)90707-R
    [9] 赵文, 孔金丞, 姜军, 等. Cd1-xZnxTe晶体中由本征缺陷引起的导电类型转变界面[J/OL][2021-06-17]. https://kns.cnki.net/kcms/detail/53.1053.TN.20210616.1310.002.html.

    ZHAO Wen, KONG Jincheng, JIANG Jun. Position-dependent conductivity transition in Cd1-xZnxTe crystal[J/OL][2021-06-17]. https://kns.cnki.net/kcms/detail/53.1053.TN.20210616.1310.002.html.
    [10] Rubaldo L, Guinedor P, Brunner A, et al. Achievement of high image quality MCT sensors with Sofradir vertical industrial model[C]//Proc. of SPIE, 2018, 10624: 106240U.
    [11] Ahluwalia G K, Patro R. Infrared Detectors[M]. Springer International Publishing, 2017.
    [12] Johnson S M, Delyon T J, Cockrum C A, et al. Direct growth of CdZnTe/Si substrates for large-area HgCdTe infrared focal-plane arrays[J]. J. Electron Mater, 1995, 24: 467-473. doi:  10.1007/BF02657949
    [13] Aguirre M, Canepa H, Heredia E, et al. Photovoltaic Hg1-xCdxTe(MCT) detectors for infrared radiation[J]. An Asoc Quim Argent, 1996, 84: 67-72. http://www.researchgate.net/publication/235953484_Photovoltaic_Hg1-xCdxTe_MCT_detectors_for_infrared_radiation
    [14] Belas E, Bugaxr M, Grill R, et al. Elimination of inclusions in (CdZn) Te substrates by post-grown annealing[J]. J. Electron. Mater. , 2007, 36: 1025. doi:  10.1007/s11664-007-0167-8
    [15] YANG G, Bolotnikov A E, Fochuk P M, et al. Post-growth thermal annealing study of CdZnTe for developing room-temperature X-ray and gamma-ray detectors[J]. Journal of Crystal Growth, 2013, 379: 16-20. doi:  10.1016/j.jcrysgro.2012.11.041
    [16] YANG G, Bolotnikov A E, Fochuk P M, et al. Effects of thermal annealing on the structural properties of CdZnTe crystals[C]// Proceedings of SPIE- The International Society for Optical Engineering, 2011, 8142(6): 814217.
    [17] Segall M D, Lindan P, Probert, M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics Condensed Matter, 2002, 14(11): 2717-2744. doi:  10.1088/0953-8984/14/11/301
    [18] Fornes T D, Carruthers S B, Huffman N D. Method for Shielding a Substrate From Electromagnetic Interference[P]. US: PCT/US2010/ 038264[2010-12-16].
    [19] Koyama A, Hichiwa A, Hirano R. Recent progress in CdZnTe crystals[J]. Journal of Electronic Materials, 1999, 28: 683-687. doi:  10.1007/s11664-999-0054-6
  • 加载中
图(5)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  101
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-19
  • 修回日期:  2021-05-13
  • 刊出日期:  2021-06-20

目录

    /

    返回文章
    返回