留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相位和表面温度的缺陷定量识别及其对比研究

陈林 黎敏谦 高峰 刘敏 张弛

陈林, 黎敏谦, 高峰, 刘敏, 张弛. 基于相位和表面温度的缺陷定量识别及其对比研究[J]. 红外技术, 2022, 44(6): 635-640.
引用本文: 陈林, 黎敏谦, 高峰, 刘敏, 张弛. 基于相位和表面温度的缺陷定量识别及其对比研究[J]. 红外技术, 2022, 44(6): 635-640.
CHEN Lin, LI Minqian, GAO Feng, LIU Min, ZHANG Chi. Quantitative Identification and Comparative Study of Defects Based on Phase and Surface Temperatures[J]. Infrared Technology , 2022, 44(6): 635-640.
Citation: CHEN Lin, LI Minqian, GAO Feng, LIU Min, ZHANG Chi. Quantitative Identification and Comparative Study of Defects Based on Phase and Surface Temperatures[J]. Infrared Technology , 2022, 44(6): 635-640.

基于相位和表面温度的缺陷定量识别及其对比研究

基金项目: “十三五”军队重点院校和重点学科专业建设计划资助
详细信息
    作者简介:

    陈林(1986-),男,博士,讲师,主要从事红外跟踪识别及检测方面研究。E-mail:chenlinhonghu@163.com

  • 中图分类号: TK38

Quantitative Identification and Comparative Study of Defects Based on Phase and Surface Temperatures

  • 摘要: 为了提高红外检测的精度,实现缺陷深度和大小的同步检测,将共轭梯度反演算法分别与脉冲检测技术和脉冲相位检测技术相结合,实现了基于相位和表面温度的红外定量识别,通过数字算例对比分析了不同因素对识别结果的影响。研究结果表明: 在无测温误差时,基于相位和表面温度的识别都能准确地识别缺陷的位置大小;基于相位和表面温度的识别结果精度都会因随机误差的增大而降低;基于表面温度的识别结果精度会因均匀误差的增大而降低,但是均匀误差对基于相位的识别无影响。
  • 图  1  二维热传导模型

    Figure  1.  The model of two-dimensional heat conduction

    图  2  基于相位和表面温度的CGM反演识别算法流程图

    Figure  2.  The flow chart of CGM inversion algorithm based on phase and surface temperature

    表  1  材料的物性参数

    Table  1.   Thermal properties of materials

    Material Specific heat capacity /
    (W/(m·℃))
    Conductivity /(J/(kg·℃) Density /
    (kg/m3)
    Test-piece 117 963 2680
    Air 0.0257 1005 1.2
    下载: 导出CSV

    表  2  不同初始假设下的识别结果

    Table  2.   Results in different initial guesses

    Initial guess/mm Identification result/mm Er/(%)
    15, 35, 5, 10 Phase detect 35.000, 25.000
    10.000, 5.000
    $2.1 \times {10^{ - 7}}$, $2.2 \times {10^{ - 8}}$
    $3.3 \times {10^{ - 7}}$, $6.6 \times {10^{ - 7}}$
    Temperature detect 35.000, 25.000
    10.000, 5.000
    $3.4 \times {10^{ - 8}}$, $6.3 \times {10^{ - 9}}$
    $1.2 \times {10^{ - 7}}$, $2.8 \times {10^{ - 8}}$
    25, 15, 8, 8 Phase detect 35.000, 25.000 $1.0 \times {10^{ - 7}}$, $5.4 \times {10^{ - 8}}$
    10.000, 5.000 $3.6 \times {10^{ - 7}}$, $ 4.2 \times {10^{ - 8}} $
    Temperature detect 35.000, 25.000 $7.6 \times {10^{ - 9}}$, $8.0 \times {10^{ - 8}}$
    10.000, 5.000 $6.8 \times {10^{ - 8}}$, $2.6 \times {10^{ - 8}}$
    45, 15, 15, 01 Phase detect 35.000, 25.000 $9.7 \times {10^{ - 8}}$, $2.0 \times {10^{ - 7}}$
    10.000, 5.000 $1.9 \times {10^{ - 7}}$, $4.6 \times {10^{ - 7}}$
    Temperature detect 35.000, 25.000 $2.4 \times {10^{ - 7}}$, $2.1 \times {10^{ - 7}}$
    10.000, 5.000 $2.0 \times {10^{ - 6}}$, $2.8 \times {10^{ - 7}}$
    下载: 导出CSV

    表  3  不同随机误差下的识别结果

    Table  3.   Results in distinct random temperature errors

    σ/℃ Identification result/mm Er/(%)
    0 Phase detect 35.000, 25.000
    10.000, 5.000
    $2.1 \times {10^{ - 7}}$, $2.2 \times {10^{ - 8}}$
    $3.3 \times {10^{ - 7}}$, $6.6 \times {10^{ - 7}}$
    Temperature detect 35.000, 25.000
    10.000, 5.000
    $3.4 \times {10^{ - 8}}$, $6.3 \times {10^{ - 9}}$
    $1.2 \times {10^{ - 7}}$, $2.8 \times {10^{ - 8}}$
    0.2 Phase detect 34.970, 25.035 0.09, 0.14
    10.016, 4.996 0.16, 0.08
    Temperature detect 34.886, 25.017 0.33, 0.07
    9.923, 5.008 0.77, 0.16
    1 Phase detect 35.159, 24.912 0.45, 0.35
    10.117, 4.960 1.17, 0.80
    Temperature detect 34.653, 24.635 0.99, 1.46
    9.764, 5.065 2.36, 1.30
    下载: 导出CSV

    表  4  不同均匀误差下的识别结果

    Table  4.   Results in distinct uniform temperature errors

    e/℃ Identification result/mm Er/(%)
    0 Phase detect 35.000, 25.000
    10.000, 5.000
    $2.1 \times {10^{ - 7}}$, $2.2 \times {10^{ - 8}}$
    $3.3 \times {10^{ - 7}}$, $6.6 \times {10^{ - 7}}$
    Temperature detect 35.000, 25.000
    10.000, 5.000
    $3.4 \times {10^{ - 8}}$, $6.3 \times {10^{ - 9}}$
    $1.2 \times {10^{ - 7}}$, $2.8 \times {10^{ - 8}}$
    0.2 Phase detect 35.000, 25.000
    10.000, 5.000
    $2.1 \times {10^{ - 7}}$, $2.2 \times {10^{ - 8}}$
    $3.3 \times {10^{ - 7}}$, $6.6 \times {10^{ - 7}}$
    Temperature detect 34.780, 24.829 0.63, 0.68
    9.157, 5.028 8.43, 0.56
    1 Phase detect 35.000, 25.000
    10.000, 5.000
    $2.1 \times {10^{ - 7}}$, $2.2 \times {10^{ - 8}}$
    $3.3 \times {10^{ - 7}}$, $6.6 \times {10^{ - 7}}$
    Temperature detect 34.507, 24.124 1.41, 3.50
    1.013, 5.077 89.87, 1.54
    下载: 导出CSV
  • [1] 李艳红, 张存林, 金万平, 等. 碳纤维复合材料的红外热波检测[J]. 激光与红外, 2005, 35(4): 262- 264. doi:  10.3969/j.issn.1001-5078.2005.04.011

    LI Yanhong, ZHANG Cunli, JIN Wanping, et al. IR thermal wave nondestructive inspection of carbon fiber composite material[J]. Laser & Infrared, 2005, 35(4): 262-264. doi:  10.3969/j.issn.1001-5078.2005.04.011
    [2] LIU J Y, GONG J L, QIN L, et al. Three-dimensional visualization of subsurface defect using lock-in thermography[J]. International Journal of' Thermophysics, 2015, 36(5/6): 1226-1235.
    [3] 高晓进, 周金帅, 江柏红, 等. C/SiC复合材料的红外热像无损检测研究[J]. 激光与红外, 2018, 4 8(6): 720-725. doi:  10.3969/j.issn.1001-5078.2018.06.010

    GAO Xiaojin, ZHOU Jinshuai, JIANG Baihong, et al. Research on infrared thermography nondestructive testing of C/SiC composite[J]. Laser & Infrared, 2018, 48(6): 720-725. doi:  10.3969/j.issn.1001-5078.2018.06.010
    [4] 林隆荣, 钟舜聪, 伏喜斌, 等. 复合材料缺陷的脉冲热成像有限元模拟研究[J]. 机电工程, 2016, 33(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC201601005.htm

    LIN Longrong, ZHONG Shuncong, FU Xibin, et al. Finite element analysis of pulsed infrared imaging of defects in composites[J]. Journal of Mechanical & Electrical Engineering, 2016, 33(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC201601005.htm
    [5] 林隆荣, 伏喜斌, 黄学斌, 等. 复合材料缺陷的红外热成像检测研究[J]. 机电工程, 2019, 36(6): 628-632. doi:  10.3969/j.issn.1001-4551.2019.06.014

    LIN Longrong, FU Xibin, HUANG Xuebin, et al. Defects detection of composite materials based on infrared thermography[J]. Journal of Mechanical & Electrical Engineering, 2019, 36(6): 628-632. doi:  10.3969/j.issn.1001-4551.2019.06.014
    [6] 郭兴旺, 陈栋. 固体火箭发动机绝热层脱粘的红外热像检测规律[J]. 南京航空航天大学学报, 2017, 49(4): 487-485. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201704006.htm

    GUO Xinhwang, CHEN Dong. Regularities of infrared thermography of disbonds in insulator of solid rocket motors[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(4): 487-485. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201704006.htm
    [7] 郭兴旺, 陈栋. 固体火箭发动机绝热层脱粘的脉冲热像检测分析[J]. 固体火箭技术, 2017, 40(2): 169-175. https://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201702007.htm

    GUO Xinhwang, CHEN Dong. Analysis on pulsed thermography of disbonds ininsulator of solid rocket motors[J]. Journal of Solid Rocket Technology, 2017, 40(2): 169-175. https://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201702007.htm
    [8] 盛涛, 江海军, 郑金华, 等. 锁相红外热波法在碳纤维夹层结构中的应用[J]. 红外技术, 2019, 41(5): 489-492. http://hwjs.nvir.cn/article/id/hwjs201905016

    SHENG Tao, JIANG Haijun, ZHENG Jinhua, et al. Application of phase-locked infrared thermal wave technology in carbon fiber sandwich structures[J]. Infrared Technology, 2019, 41(5): 489-492. http://hwjs.nvir.cn/article/id/hwjs201905016
    [9] 李根, 翰学, 范瑾, 等. 锁相红外热像检测缺陷的定量方法[J]. 无损检测, 2017, 39(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201706001.htm

    LI Gen, ZHAO Hanxu, FAN Jin, et al. A defect quantification method by lock-in thermography[J]. Nondestructive Testing, 2017, 39(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201706001.htm
    [10] 程腾, 吴健雄, 张勇, 等. 囊体布热合缺陷的锁相热成像无损检测技术研究[J]. 实验力学, 2015, 30(5): 577-582. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201505004.htm

    CHENG Teng, WU Jianxiong, ZHANG Yong, et al. On the lock-in thermography non-destructive testing ofheat sealed capsule body cloth defect[J]. Journal of Experimental Mechanics, 2015, 30(5): 577-582. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201505004.htm
    [11] WEI Yanjie, SU Zhilong, MAO Shuangshuang, et al. An infrared defect sizing method based on enhanced phase images[J]. Sensors, 2020, 20(13): E3626- E3626. doi:  10.3390/s20133626
    [12] 陶胜杰, 杨正伟, 田干, 等. 红外脉冲相位热像检测效率提高方法[J]. 红外与激光工程, 2016, 45(5): 0504005(1) -0504005(7). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201605007.htm

    TAO Shengjie, YANG Zhengwei, TIAN Gan, et al. Method for improving detection efficiency using infrared pulsephase thermography[J]. Infrared and Laser Engineering, 2016, 45(5): 0504005(1)-0504005(7). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201605007.htm
    [13] 杨祯, 张士成, 杨立. 变谱法在红外热像仪测温中的应用[J]. 红外与激光工程, 2012, 41(6): 1432-1437. doi:  10.3969/j.issn.1007-2276.2012.06.006

    YANG Zhen, ZHANG Shicheng, YANG Li. Altering spectrum method in temperature measurement using infrared imager[J]. Infrared and Laser Engineering, 2012, 41(6): 1432-1437. doi:  10.3969/j.issn.1007-2276.2012.06.006
    [14] 杨祯, 张士成, 杨立. 反射温度补偿法及其实验验证[J]. 光学精密工程, 2010, 18(9): 1959-1964. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201009009.htm

    YANG Zhen, ZHANG Shicheng, YANG Li. Reflected temperature compensation method and its experimental verification[J]. Optics and Precision Engineering, 2010, 18(9): 1959-1964. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201009009.htm
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  29
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09
  • 修回日期:  2021-02-28
  • 刊出日期:  2022-06-20

目录

    /

    返回文章
    返回