留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多特征融合下的高光谱图像混合卷积分类

熊余 单德明 姚玉 张宇

熊余, 单德明, 姚玉, 张宇. 多特征融合下的高光谱图像混合卷积分类[J]. 红外技术, 2022, 44(1): 9-20.
引用本文: 熊余, 单德明, 姚玉, 张宇. 多特征融合下的高光谱图像混合卷积分类[J]. 红外技术, 2022, 44(1): 9-20.
XIONG Yu, SHAN Deming, YAO Yu, ZHANG Yu. Hyperspectral Image Hybrid Convolution Classification under Multi-Feature Fusion[J]. Infrared Technology , 2022, 44(1): 9-20.
Citation: XIONG Yu, SHAN Deming, YAO Yu, ZHANG Yu. Hyperspectral Image Hybrid Convolution Classification under Multi-Feature Fusion[J]. Infrared Technology , 2022, 44(1): 9-20.

多特征融合下的高光谱图像混合卷积分类

基金项目: 

国家自然科学基金资助项目 61401052

国家留学基金委资助项目 201608500030

重庆市教委科学技术研究资助项目 KJ1400418

重庆市教委科学技术研究资助项目 KJ1500445

重庆邮电大学博士启动基金资助项目 A2015-09

详细信息
    作者简介:

    熊余(1982-),男,研究员,博士,主要研究方向为教育大数据,光网络。E-mail:xiongyu@cqupt.edu.cn

  • 中图分类号: TP391.41

Hyperspectral Image Hybrid Convolution Classification under Multi-Feature Fusion

  • 摘要: 针对现有高光谱遥感图像卷积神经网络分类算法空谱特征利用率不足的问题,提出一种多特征融合下基于混合卷积胶囊网络的高光谱图像分类策略。首先,联合使用主成分分析和非负矩阵分解对高光谱数据集进行降维;然后,将降维所得主成分通过超像素分割和余弦聚类生成一个多维特征集;最后,将叠加后的特征集通过二维、三维多尺度混合卷积网络进行空谱特征提取,并使用胶囊网络对其进行分类。通过在不同高光谱数据集下的实验结果表明,在相同20维光谱维度下,所提策略相比于传统分类策略在总体精度、平均精度以及Kappa系数上均有明显提升。
  • 图  1  Pavia University数据集PCA降维成分方差比例分布图

    Figure  1.  The distribution of variance ratio of PCA dimension reduction components in Pavia University dataset

    图  2  Pavia University降维图

    Figure  2.  Pavia University dimensionality reduction image

    图  3  胶囊网络神经元解析图

    Figure  3.  Analytic diagram of capsule network neurons

    图  4  HCCN分类示意图

    Figure  4.  Schematic diagram of HCCN classification

    图  5  MFF-HCCN算法结构图

    Figure  5.  MFF-HCCN algorithm structure diagram

    图  6  Indian Pines伪彩色图及其标记图

    Figure  6.  Pseudo-color map of Indian Pines and its marker map

    图  7  各算法在Indian Pines数据集10%训练样本下分类图像

    Figure  7.  Each algorithm classifies images under 10% of the training samples in the Indian Pines dataset

    图  8  Pavia University伪彩色图及其标记图

    Figure  8.  Pseudo-color map of Pavia University and its marker map

    图  9  各算法在Pavia University数据集2%训练样本下分类图像

    Figure  9.  Each algorithm classifies images under 2% of the training samples in the Pavia University dataset

    图  10  WHU-Hi-Longkou伪彩色图及其标记图

    Figure  10.  Pseudo-color map of WHU-Hi-Longkou and its marker map

    图  11  各算法在WHU-Hi-Longkou数据集0.5%训练样本下分类图像

    Figure  11.  Each algorithm classifies images under 0.5% of the training samples in the WHU-Hi-Longkou dataset

    图  12  不同训练样本下的总体分类精度OA曲线图

    Figure  12.  OA curves of overall classification accuracy under different training samples

    表  1  Pavia University数据集卷积分类各层的参数

    Table  1.   Parameters of each layer of convolutional classification of Pavia University dataset

    Network layer (type) Convolution kernel Stride Parameter Output
    Input layer
    Conv3D layer1
    Conv3D layer2
    Conv3D layer3
    Conv3D layer4
    Reshape1
    Conv2D layer1
    Reshape2
    Conv2Dlayer2
    Reshape3
    Conv2Dlayer3
    Reshape
    Concatenate
    Capsule
    Output layer

    (3, 2, 3, 16)
    (2, 3, 3, 16)
    (2, 1, 3, 64)
    (1, 2, 7, 64)
     
    (1, 1, 64)
     
    (2, 2, 64)
     
    (3, 3, 64)
     

     

    (1, 1, 1)
    (1, 1, 1)
    (1, 1, 1)
    (1, 1, 1)
     
    (1, 1)
     
    (1, 1)
     
    (1, 1)
     

     
    0
    304
    4624
    6208
    57408
    0
    32832
    0
    131136
    0
    294976
    0
    0
    9216
     
    (11, 11, 20)
    (9, 10, 18)
    (8, 8, 16)
    (7, 8, 14)
    (7, 7, 8)
    (7, 7)
    (7, 7)
    (49, 64)
    (6, 6)
    (36, 64)
    (5, 5)
    (25, 64)
    (110, 64)
    (9, 16)
    9
    下载: 导出CSV

    表  2  Indian Pines数据集的地物类别和样本数

    Table  2.   Land cover classes and numbers of samples in Indian Pines dataset

    No. Class name Numbers of samples
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    Alfalfa
    Corn-notill
    Corn-min
    Corn
    Grass-pasture
    Grass-trees
    Grass-pasture-mowed
    Hay-windrowed
    Oats
    Soybean-notill
    Soybean-mintill
    Soybean-clean
    Wheat
    Woods
    Buildings-grass-trees-crives
    Stone-steel-towers
    46
    1428
    830
    237
    483
    730
    28
    478
    20
    972
    2455
    593
    205
    1265
    386
    93
    Total 10249
    下载: 导出CSV

    表  3  Pavia University数据集的地物类别和样本数

    Table  3.   Land cover classes and numbers of samples in Pavia University dataset

    No. Class name Numbers of samples
    1
    2
    3
    4
    5
    6
    7
    8
    9
    Asphalt
    Meadows
    Gravel
    Trees
    Painted metal sheets
    Bare soil
    Bitumen
    Self-blocking bricks
    Shadows
    6631
    18649
    2099
    3064
    1345
    5029
    1330
    3682
    947
    Total 42776
    下载: 导出CSV

    表  4  WHU-Hi-Longkou数据集的地物类别和样本数

    Table  4.   Land cover classes and numbers of samples in WHU- Hi-Longkou dataset

    No. Class name Numbers of samples
    1
    2
    3
    4
    5
    6
    7
    8
    9
    Corn
    Cotton
    Sesame
    Broad-leaf soybean
    Narrow-leaf soybean
    Rice
    Water
    Roads and houses
    Mixed weed
    34511
    8374
    3031
    63212
    4151
    11854
    67056
    7124
    5229
    Total 204542
    下载: 导出CSV

    表  5  各算法在Indian Pines数据集10%训练样本下的分类结果比较

    Table  5.   Comparison of the classification results of each algorithm under 10% training samples of the Indian Pines dataset

    SVM PCA-SVM MFF-SVM 3DCNN PCA-3DCNN MFF-3DCNN PCA-Hybrid SN MFF-HCCN
    OA(%)
    AA(%)
    Kappa×100
    80.369
    75.027
    77.493
    65.431
    54.874
    59.306
    89.442
    86.284
    87.964
    91.09
    90.443
    89.743
    86.101
    80.647
    84.134
    92.926
    94.204
    91.943
    96.758
    95.871
    96.309
    99.230
    97.795
    99.123
    Train times/s 590.3 275.2 275.2 248.2 733.4
    下载: 导出CSV

    表  6  各算法在Pavia University数据集2%训练样本下分类结果比较

    Table  6.   Comparison of the classification results of each algorithm under 2% training samples of the Pavia University dataset

    SVM PCA-SVM MFF-SVM 3DCNN PCA-3DCNN MFF-3DCNN PCA-HybridSN MFF-HCCN
    OA(%)
    AA(%)
    Kappa$ \times $100
    91.913
    88.899
    89.204
    78.147
    64.517
    69.417
    95.274
    93.946
    93.699
    93.338
    90.960
    91.137
    95.840
    94.157
    94.475
    97.674
    96.386
    96.904
    97.941
    97.304
    97.267
    99.253
    98.621
    99.010
    Train times/s - - - 366.6 256.2 256.2 212.9 574.4
    下载: 导出CSV

    表  7  各算法在WHU-Hi-Longkou数据集0.5%训练样本下分类结果比较

    Table  7.   Comparison of the classification results of each algorithm under 0.5% training samples of the WHU-Hi-Longkou dataset

    SVM PCA-SVM MFF-SVM 3DCNN PCA-3DCNN MFF-3DCNN PCA-HybridSN MFF-HCCN
    OA(%)
    AA(%)
    Kappa$ \times $100
    95.036
    83.133
    93.437
    88.933
    58.389
    85.388
    98.032
    94.894
    97.400
    94.233
    83.464
    92.409
    98.336
    98.736
    95.163
    98.759
    96.309
    98.369
    98.716
    97.233
    98.315
    99.024
    97.278
    98.718
    Train times/s - - - 491.2 382.1 382.1 353.9 816.3
    下载: 导出CSV
  • [1] 蓝金辉, 邹金霖, 郝彦爽, 等. 高光谱遥感图像混合像元分解研究进展[J]. 遥感学报, 2018, 22(1): 13-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201801002.htm

    LAN J, ZOU J, HAO Y, et al. Research progress on unmixing of hyperspectral remote sensing imagery[J]. Journal of Remote Sensing, 2018, 22(1): 13-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201801002.htm
    [2] 徐金环, 沈煜, 刘鹏飞, 等. 联合核稀疏多元逻辑回归和TV-L1错误剔除的高光谱图像分类算法[J]. 电子学报, 2018, 46(1): 175-184. doi:  10.3969/j.issn.0372-2112.2018.01.024

    XU J, SHEN Y, LIU P, et al. Hyperspectral image classification combining kernel sparse multinomial logistic regression and TV-L1 error rejection[J]. Acta Electronica Sinica, 2018, 46(1): 175-184. doi:  10.3969/j.issn.0372-2112.2018.01.024
    [3] 刘启超, 肖亮, 刘芳, 等. SSC DenseNet: 一种空-谱卷积稠密网络的高光谱图像分类算法[J]. 电子学报, 2020, 48(4): 751-762. doi:  10.3969/j.issn.0372-2112.2020.04.017

    LIU Q, XIAO L, LIU F, et al. SSC DenseNet: a spectral-spatial convolutional dense network for hyperspectral image classification[J]. Acta Electronica Sinica, 2020, 48(4): 751-762. doi:  10.3969/j.issn.0372-2112.2020.04.017
    [4] LI S, SONG W, FANG L, et al. Deep learning for hyperspectral image classification: an overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6690-6709. doi:  10.1109/TGRS.2019.2907932
    [5] Nanjun H, Paoletti M E, Mario H J, et al. Feature extraction with multiscale covariance maps for hyperspectral image classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2018, 57(2): 755-769.
    [6] GAO H, LIN S, LI C, et al. Application of hyperspectral image classification based on overlap pooling[J]. Neural Processing Letters, 2019, 49(3): 1335-1354. doi:  10.1007/s11063-018-9876-7
    [7] YU C, ZHAO M, SONG M, et al. Hyperspectral image classification method based on CNN architecture embedding with hashing semantic feature[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(6): 1866-1881. doi:  10.1109/JSTARS.2019.2911987
    [8] YING L, Haokui Z, QIANG S. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1): 67-88. doi:  10.3390/rs9010067
    [9] HE M, LI B, CHEN H, et al. Multi-scale 3D deep convolutional neural network for hyperspectral image classification[C]//IEEE International Conference on Image Processing, 2017: 3904-3908.
    [10] Roy S K, Krishna G, Dubey S R, et al. Hybrid SN: exploring 3D-2D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2): 277-281. doi:  10.1109/LGRS.2019.2918719
    [11] WEI W, ZHANG J, LEI Z, et al. Deep cube-pair network for hyperspectral imagery classification[J]. Remote Sensing, 2018, 10(5): 783-801. doi:  10.3390/rs10050783
    [12] Baisantry M, SAO A K. Band selection using segmented PCA and component loadings for hyperspectral image classification[C]//IEEE International Geoscience and Remote Sensing Symposium, 2019: 3812-3815.
    [13] ZHANG W, FU K, SUN X, et al. Joint optimisation convex-negative matrix factorisation for multi-modal image collection summarisation based on images and tags[J]. IET Computer Vision, 2018, 13(2): 125-130.
    [14] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. doi:  10.1109/TPAMI.2012.120
    [15] Achanta R, Süsstrunk S. Superpixels and polygons using simple non-iterative clustering[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4895-4904.
    [16] Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[C]// Proceedings of the 2017 International Conference on Neural Information Processing Systems, 2017: 3856-3866.
    [17] ZHONG Y, WANG X, XU Y, et al. Mini-UAV-Borne hyperspectral remote sensing: from observation and processing to applications[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(4): 46-62.
  • 加载中
图(12) / 表(7)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  45
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 修回日期:  2021-01-25
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回