留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大规模高帧频读出电路高速数据传输模型研究

叶联华 刘煦 李云铎 黄松垒 黄张成

叶联华, 刘煦, 李云铎, 黄松垒, 黄张成. 大规模高帧频读出电路高速数据传输模型研究[J]. 红外技术, 2022, 44(1): 66-72.
引用本文: 叶联华, 刘煦, 李云铎, 黄松垒, 黄张成. 大规模高帧频读出电路高速数据传输模型研究[J]. 红外技术, 2022, 44(1): 66-72.
YE Lianhua, LIU Xu, LI Yunduo, HUANG Songlei, HUANG Zhangcheng. Research on High-Speed Data Transmission Model of Large-Format High-Frame-Rate Readout Integrated Circuit[J]. Infrared Technology , 2022, 44(1): 66-72.
Citation: YE Lianhua, LIU Xu, LI Yunduo, HUANG Songlei, HUANG Zhangcheng. Research on High-Speed Data Transmission Model of Large-Format High-Frame-Rate Readout Integrated Circuit[J]. Infrared Technology , 2022, 44(1): 66-72.

大规模高帧频读出电路高速数据传输模型研究

基金项目: 

上海市自然科学基金 19ZR1465500

详细信息
    作者简介:

    叶联华(1995-),男,硕士研究生,主要研究方向为单光子焦平面读出电路设计。E-mail: yelianhua0219@163.com

    通讯作者:

    黄张成(1985-),男,副研究员,主要研究方向为光电传感器专用集成电路设计及高光谱短波红外探测器研制。E-mail: huangzc@mail.sitp.ac.cn

  • 中图分类号: TN402

Research on High-Speed Data Transmission Model of Large-Format High-Frame-Rate Readout Integrated Circuit

  • 摘要: 本文针对大规模高帧频读出电路的数字信号输出建立了高速数据传输模型。首先由集总参数模型得到传输电路3 dB带宽及响应时间常数与各器件参数之间的关系,指明了输出级MOS管的尺寸及传输线负载是决定高速时域响应特性的关键参数。进一步采用分布参数模型,利用Elmore延时模型更精确地确定了响应时间常数的数学解析式,获得了可使带宽最大化的输出级尺寸的最优设计。仿真结果表明,在典型的64×64面阵功耗和面积约束条件下,优化后传输门和复合逻辑门两种三态传输电路的输出3 dB带宽分别可达293 MHz和395 MHz。
  • 图  1  读出电路及其传输电路结构(a:基于传输门的三态电路;b:基于复合逻辑门的三态电路)

    Figure  1.  Structure of transmission circuit: (a: Three-state circuit based on transmission gate; b: Three-state circuit based on composite logic gate)

    图  2  传输门结构驱动和输出级的集总等效电路

    Figure  2.  The lumped equivalent circuit of drive and output stage based on transmission gate

    图  3  响应时间常数与充放电电流的关系

    Figure  3.  Relationship between response time constant and charge-discharge current

    图  4  复合逻辑门结构驱动和输出级的集总等效电路

    Figure  4.  The lumped equivalent circuit of drive and output stages based on composite logic gate

    图  5  i个像元输出的等效树形结构RC

    Figure  5.  RC chain with equivalent tree structure for i-th pixel output stage

    图  6  输出带宽与传输线宽度的关系曲线

    Figure  6.  Relation curves between output bandwidth and transmission line width

    图  7  3 dB带宽与传输门尺寸的关系曲线

    Figure  7.  Relationship between 3 dB bandwidth and transmission gate size

    图  8  平均电流与传输门尺寸的关系曲线

    Figure  8.  Relationship between average current and transmission gate size

    图  9  传输线宽度对输出带宽(a)和平均电流(b)的影响

    Figure  9.  Influence of transmission line width on output bandwidth (a) and average current (b)

    图  10  最优设计下输出带宽随平均电流的变化曲线

    Figure  10.  Output bandwidth versus average current curves under optimal design

  • [1] Richardson J, Walker R, Grant L, et al. A 32× 32 50ps resolution 10 bit time to digital converter array in 130 nm CMOS for time correlated imaging[C]//IEEE Custom Integrated Circuits Conference. IEEE, 2009: 77-80.
    [2] Gersbach M, Maruyama Y, Trimananda R, et al. A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology[J]. IEEE Journal of Solid-State Circuits, 2012, 47(6): 1394-1407. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=65A94AB0057DF293499DE4205CA62279?doi=10.1.1.418.1952&rep=rep1&type=pdf
    [3] Field R M, Realov S, Shepard K L. A 100 fps, time-correlated single-photon-counting-based fluorescence-lifetime imager in 130 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2014, 49(4): 867-880. doi:  10.1109/JSSC.2013.2293777
    [4] YANG X, ZHU H, Nakura T, et al. A 15×15 single photon avalanche diode sensor featuring breakdown pixels extraction architecture for efficient data readout[J]. Japanese Journal of Applied Physics, 2016, 55(4S): 04EF04. doi:  10.7567/JJAP.55.04EF04
    [5] NIE K, WANG X, QIAO J, et al. A full parallel event driven readout technique for area array SPAD FLIM image sensors[J]. Sensors, 2016, 16(2): 160. doi:  10.3390/s16020160
    [6] Shawkat M S A, Mcfarlane N. A digital CMOS silicon photomultiplier using perimeter gated single photon avalanche diodes with asynchronous AER readout[J]. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2020, 67(12): 4818-4828. doi:  10.1109/TCSI.2020.2997358
    [7] Buchholz J, Krieger J, Bruschini C, et al. Widefield high frame rate single-photon SPAD imagers for SPIM-FCS[J]. Biophysical Journal, 2018, 114(10): 2455-2464. doi:  10.1016/j.bpj.2018.04.029
    [8] Aull B F, Duerr E K, Frechette J P, et al. Large-format geiger-mode avalanche photodiode arrays and readout circuits[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 24(2): 1-10.
    [9] Cominelli A, Acconcia G, Peronio P, et al. Readout architectures for high efficiency in time-correlated single photon counting experiments-analysis and review[J]. IEEE Photonics Journal, 2017, 9(3): 1-15.
    [10] Rabaey J M, Chandrakasan A P, Nikolić B. Digital Integrated Circuits: A Design Perspective[M]. Upper Saddle River, NJ: Pearson education, 2003.
  • 加载中
图(10)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  49
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-07
  • 修回日期:  2022-01-08
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回