留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫化锌体材料制备及其光学性能研究进展

吴绍华 赵劲松 赵跃进 杨伟声 姜杰 李茂忠 董汝昆 母婷婷 郑丽和

吴绍华, 赵劲松, 赵跃进, 杨伟声, 姜杰, 李茂忠, 董汝昆, 母婷婷, 郑丽和. 硫化锌体材料制备及其光学性能研究进展[J]. 红外技术, 2022, 44(5): 453-461.
引用本文: 吴绍华, 赵劲松, 赵跃进, 杨伟声, 姜杰, 李茂忠, 董汝昆, 母婷婷, 郑丽和. 硫化锌体材料制备及其光学性能研究进展[J]. 红外技术, 2022, 44(5): 453-461.
WU Shaohua, ZHAO Jingsong, ZHAO Yuejin, YANG Weisheng, JIANG Jie, LI Maozhong, DONG Rukun, MU Tingting, ZHENG Lihe. Review on the Fabrication and Optical Performance of ZnS Bulk Materials[J]. Infrared Technology , 2022, 44(5): 453-461.
Citation: WU Shaohua, ZHAO Jingsong, ZHAO Yuejin, YANG Weisheng, JIANG Jie, LI Maozhong, DONG Rukun, MU Tingting, ZHENG Lihe. Review on the Fabrication and Optical Performance of ZnS Bulk Materials[J]. Infrared Technology , 2022, 44(5): 453-461.

硫化锌体材料制备及其光学性能研究进展

基金项目: 

云南省科技创新强省计划项目 2014AA023

国家自然科学基金 62165017

云南省科技厅基础研究项目 202201AS070013

云南省科技厅基础研究项目 202101AT070162

详细信息
    作者简介:

    吴绍华(1976-),男,博士研究生,高级工程师,研究方向:红外光学材料。E-mail:13577018379@163.com

    通讯作者:

    赵劲松(1972-),男,教授级高级工程师,博士,主要从事红外热像仪总体技术、装配与测试技术、偏振成像技术及多光谱成像技术等方面的研究。E-mail:zhaojinsong@tsinghua.org.cn

    郑丽和(1983-),女,教授,博士,主要从事激光材料与器件及其应用、先进室温键合技术在激光领域的应用研究

  • 中图分类号: O782; O734

Review on the Fabrication and Optical Performance of ZnS Bulk Materials

  • 摘要: 多光谱波段透过型ZnS体材料在整流罩、红外透镜、红外窗口等领域具有广泛应用。本文全面梳理和总结了ZnS体材料制备技术的最新研究进展,包括热压技术、化学气相沉积+热等静压技术等。分析了不同制备方法对ZnS体材料光学性能的影响因素。最后展望了ZnS体材料的未来发展方向。
  • 图  1  CVT工艺步骤示意图[14]:(a) 单质硫升华提纯;(b)单质锌升华提纯;(c)气相合成ZnS;(d)ZnS晶体生长

    Figure  1.  Schematic diagram of the CVT process sequence: (a) Purification of sulfur by sublimation; (b) Purification of Zinc by sublimation; (c) Synthesis via vapor phase; (d) Crystal growth

    图  2  热等静压处理前后ZnS-std的特征吸收光谱

    Figure  2.  Typical absorption spectrum of ZnS-std before and after HIP process

    图  3  不同沉积温度条件下ZnS-std晶体表面形貌及颜色

    (a)600℃,(b)670℃,(c)720℃,(d)750℃

    Figure  3.  ZnS-std under different deposited temperatures

    (a)600℃, (b)670℃, (c)720℃, (d)750℃

    图  4  HP-ZnS及其光谱透射曲线[19]

    Figure  4.  Infrared transmission spectrum of the sintered ZnS ceramics and the sintered ZnS pellet (inset photo)[19]

    图  5  ZnS-std和不同热等静压条件下ZnS-ms的能带边缘吸光度和可见-红外光谱图

    Figure  5.  Calculated band-edge extinction and VIS-FTIR spectra of ZnS-std and ZnS-ms

    图  6  不同尺度下ZnS-std(左)和ZnS-ms(右)的表面形貌

    (A & B:光学显微;C & D:SEM;E & F:TEM)

    Figure  6.  ZnS-std (L) versus ZnS-ms (R) at various length scales

    (A & B: optical micrographs; C & D: SEM; E & F: TEM)

    图  7  不同ZnS材料的光谱透过曲线(1.HP-ZnS,2.ZnS-std,3.IRTRAN2,4.ZnS-e,5.ZnS-ms)

    Figure  7.  Transmission of various ZnS materials: (1.HP-ZnS, 2.ZnS-std, 3.IRTRAN2, 4.ZnS-e, 5. ZnS-ms)

    表  1  ZnS体材料制备方法及工艺数据[11]

    Table  1.   Growth methods and fabrication parameters of ZnS bulk materials

    Method Fabrication Conditions Deposition (production) rate/(μm/h) 10.6 μm transmittance/% (thickness/mm)
    T/℃ P/Pa
    CVD 630–800 < 104 50–100 72 (6)
    Sublimation > 1000 1–10 100–1000 ≤ 70 (1.5)
    Hot pressing 900–1000 107–108 > 1000 > 70 (2)
    Melt growth > 1830 106–107 58 (3.5)
    下载: 导出CSV

    表  2  ZnS-std晶体生长的工艺条件参数,Zn(v)代表Zn蒸汽

    Table  2.   Deposition conditions for ZnS-std, Zn(v) is short for Zn vapor

    Zn(v)/H2S Deposition temperature/℃ Deposition pressure/MPa Deposition rate/(μm⋅h-1)
    1−1.75 630−730 4−8 72
    1.25−1.67 660−680 4−6 53
    1.05−1.5 620−720 4 60
    1−2 630−650 1−3 -
    ~1.0 650−750 0.5−1 80−100
    0.5−1.25 450−600 0.5−1.5 -
    1.0 550−650 0.5−1 34
    0.4−1 650−750 0.5−7.2 -
    0.05−2 530−750 5.3 150
    0.8−1.4 600−730 5−10 30−70
    下载: 导出CSV
  • [1] Tran T K, Park W, Tong W, et al. Photoluminescence properties of ZnS epilayers[J]. Journal of Applied Physics, 1997, 81(6): 2803-2809. doi:  10.1063/1.363937
    [2] LIU X, ZHU J, HAN J. Numerical and experimental investigation on thermal shock failure of Y2O3-coated CVD ZnS infrared windows[J]. International Journal of Heat and Mass Transfer, 2018, 124: 124-130. doi:  10.1016/j.ijheatmasstransfer.2018.03.062
    [3] QU Z, CHENG X, HE R, et al. Rapid heating thermal shock behavior study of CVD ZnS infrared window material: numerical and experimental study[J]. Journal of Alloys and Compounds, 2016, 682: 565-570. doi:  10.1016/j.jallcom.2016.05.019
    [4] LIN Z, WANG G, LI L, et al. Preparation and protection of ZnS surface sub-wavelength structure for infrared window[J]. Applied Surface Science, 2019, 470: 395-404. doi:  10.1016/j.apsusc.2018.11.156
    [5] Gavrishchuk E M, Yashina É V. Zinc sulfide and zinc selenide optical elements for IR engineering[J]. Journal of Optical Technology, 2004, 71(12): 822. doi:  10.1364/JOT.71.000822
    [6] LIU Y, HE Y, YUAN Z, et al. Numerical and experimental study on thermal shock damage of CVD ZnS infrared window material[J]. Journal of Alloys and Compounds, 2014, 589: 101-108. doi:  10.1016/j.jallcom.2013.11.126
    [7] Chmel A, Dunaev A, Shcherbakov I, et al. Luminescence from impact- and abrasive-damaged ZnS ceramics[J]. Procedia Structural Integrity, 2018, 9: 3-8. doi:  10.1016/j.prostr.2018.06.002
    [8] FANG X, ZHAI T, Gautam U K, et al. ZnS nanostructures: from synthesis to applications[J]. Progress in Materials Science, 2011, 56(2): 175-287. doi:  10.1016/j.pmatsci.2010.10.001
    [9] Harris D C. Frontiers in infrared window and dome materials[C]//Infrared Technology XXI. International Society for Optics and Photonics, 1995, 2552: 325-335.
    [10] Klein C A, DiBenedetto B, Kohane T. Chemically vapor-deposited zinc sulfide infrared windows: optical properties and physical characteristics[C]//Proceedings of the Society of Photo-Optical Instrumentation Engineers, 1979, 204: 85-94.
    [11] Yashina E V. Preparation and properties of polycrystalline ZnS for IR applications[J]. Neorganicheskie Materialy, 2003, 39(7): 663-668.
    [12] 江宏, 林宇. 红外整流罩纯热应力分析[J]. 红外技术, 2021, 43(3): 292-298. http://hwjs.nvir.cn/article/id/f2011060-9714-4b8e-b222-6c17fcf7673c

    JIANG Hong, LIN Yu. Infrared dome pure thermal stress analysis[J]. Infrared Technology, 2021, 43(3): 292-298. http://hwjs.nvir.cn/article/id/f2011060-9714-4b8e-b222-6c17fcf7673c
    [13] Nelson J, Gould A, Smith N, et al. Advances in freeform optics fabrication for conformal window and dome applications [C]//Proc. of SPIE, 2013, 8708: 870815-1-10.
    [14] Lauck R. Chemical vapor transport of zinc sulfide: Part Ⅰ: Isotopic crystals from nearly stoichiometric vapor phase[J]. Journal of Crystal Growth, 2010, 312(24): 3642-3649. doi:  10.1016/j.jcrysgro.2010.09.037
    [15] Ujiie S, Kotera Y. The growth of cubic zinc sulfide crystals by the chemical transport method[J]. Journal of Crystal Growth, 1971, 10(4): 320-322. doi:  10.1016/0022-0248(71)90006-6
    [16] Dangel P N, Wuensch B J. Growth of zinc sulfide by iodine transport[J]. Journal of Crystal Growth, 1973, 19(1): 1-4. doi:  10.1016/0022-0248(73)90072-9
    [17] De A K, Muralidhar K, Eswaran V, et al. Modelling of transport phenomena in a low-pressure CVD reactor[J]. Journal of Crystal Growth, 2004, 267(3-4): 598-612. doi:  10.1016/j.jcrysgro.2004.04.036
    [18] Ooshita K, Inoue T, Sekiguchi T, et al. Flux growth of ZnS single crystals and their characterization[J]. Journal of Crystal Growth, 2004, 267(1-2): 74-79. doi:  10.1016/j.jcrysgro.2004.03.067
    [19] LI Y, WU Y. Transparent and luminescent ZnS ceramics consolidated by vacuum hot pressing method[J]. Journal of the American Ceramic Society, 2015, 98(10): 2972-2975. doi:  10.1111/jace.13781
    [20] LU C, PAN Y, KOU H, et al. Densification behavior, phase transition, and preferred orientation of hot-pressed ZnS ceramics from precipitated nanopowders[J]. Journal of the American Ceramic Society, 2016, 99(9): 3060-3066. doi:  10.1111/jace.14334
    [21] Chlique C, Delaizir G, Merdrignac-Conanec O, et al. A comparative study of ZnS powders sintering by hot uniaxial pressing (HUP) and spark plasma sintering (SPS)[J]. Optical Materials, 2011, 33(5): 706-712. doi:  10.1016/j.optmat.2010.10.008
    [22] Chlique C, Merdrignac-Conanec O, Hakmeh N, et al. Transparent ZnS ceramics by sintering of high purity monodisperse nanopowders[J]. Journal of the American Ceramic Society, 2013, 96(10): 3070-3074. doi:  10.1111/jace.12570
    [23] LI C, XIE T, DAI J, et al. Hot-pressing of zinc sulfide infrared transparent ceramics from nanopowders synthesized by the solvothermal method[J]. Ceramics International, 2018, 44(1): 747-752. doi:  10.1016/j.ceramint.2017.09.242
    [24] CHEN Y, ZHANG L, ZHANG J, et al. Fabrication of transparent ZnS ceramic by optimizing the heating rate in spark plasma sintering process[J]. Optical Materials, 2015, 50: 36-39. doi:  10.1016/j.optmat.2015.03.058
    [25] Kirchner H P, Tiracorda J A, Larchuk T J. Contact damage in hot-pressed and chemically-vapor-deposited zinc sulfide[J]. Journal of the American Ceramic Society, 1984, 67(9): C-188-C-190.
    [26] Zscheckel T, Wisniewski W, Gebhardt A, et al. Mechanisms counteracting the growth of large grains in industrial zns grown by chemical vapor deposition [J]. Acs Applied Materials & Interfaces, 2014, 6(1): 394-400.
    [27] Goela J S, Taylor R L. Monolithic material fabrication by chemical vapour deposition[J]. Journal of Materials Science, 1988, 23(12): 4331-4339. doi:  10.1007/BF00551927
    [28] Sharifi Y, Achenie L E K. Effect of substrate geometry on the deposition rate in chemical vapor deposition[J]. Journal of Crystal Growth, 2007, 304(2): 520-525. doi:  10.1016/j.jcrysgro.2007.03.046
    [29] McCloy J, Fest E, Korenstein R, et al. Anisotropy in structural and optical properties of chemical vapor deposited ZnS[C]//Window and Dome Technologies and Materials XII, International Society for Optics and Photonics, 2011, 8016: 80160I-1-11.
    [30] LI Y, WU Y. Transparent and luminescent ZnS ceramics consolidated by vacuum hot pressing method[J]. Journal of the American Ceramic Society, 2015, 98(10): 2972-2975. doi:  10.1111/jace.13781
    [31] LIU M, WANG S, WANG C, et al. Understanding of electronic and optical properties of ZnS with high concentration of point defects induced by hot pressing process: The first-principles calculations[J]. Computational Materials Science, 2020, 174: 109492-1-7.
    [32] Lee K, Choi B, Woo J, et al. Microstructural and optical properties of the ZnS ceramics sintered by vacuum hot-pressing using hydrothermally synthesized ZnS powders[J]. Journal of the European Ceramic Society, 2018, 38(12): 4237-4244. doi:  10.1016/j.jeurceramsoc.2018.05.018
    [33] HONG J, Jung W K, Choi D H. Effect of porosity and hexagonality on the infrared transmission of spark plasma sintered ZnS ceramics[J]. Ceramics International, 2020, 46(10): 16285-16290. doi:  10.1016/j.ceramint.2020.03.185
    [34] LI Y, ZHANG L, Kisslinger K, et al. Green phosphorescence of zinc sulfide optical ceramics[J]. Optical Materials Express, 2014, 4(6): 1140-1150. doi:  10.1364/OME.4.001140
    [35] LI Y, TAN W, WU Y. Phase transition between sphalerite and wurtzite in ZnS optical ceramic materials[J]. Journal of the European Ceramic Society, 2020, 40(5): 2130-2140. doi:  10.1016/j.jeurceramsoc.2019.12.045
    [36] Yeo S, Kwon T, Park C, et al. Sintering and optical properties of transparent ZnS ceramics by pre-heating treatment temperature[J]. Journal of Electroceramics, 2018(41): 1-8.
    [37] 甘硕文, 杨勇, 廉伟艳, 等. 热压硫化锌后处理改性研究及其高温特性分析[J]. 红外与激光工程, 2015, 44(8): 2435-2440. doi:  10.3969/j.issn.1007-2276.2015.08.033

    GAN Shuowen, YANG Yong, LIAN Weiyan, et al. Hot-pressed ZnS post-treatment modification and analysis of its high temperature properties[J]. Infrared and Laser Engineering, 2015, 44(8): 2435-2440. doi:  10.3969/j.issn.1007-2276.2015.08.033
    [38] FANG Z, CHAI Y, HAO Y, et al. CVD growth of bulk polycrystalline ZnS and its optical properties[J]. Journal of Crystal Growth, 2002, (237-239): 1707-1710.
    [39] 方珍意, 潘伟, 祝海峰, 等. 不同制备工艺对ZnS光学性能的影响[J]. 稀有金属材料与工程, 2005(z2): 1066-1069. doi:  10.3321/j.issn:1002-185X.2005.z2.123

    FANG Z, PAN W, ZHU H. The optical properties of ZnS dependent on different fabricating process[J]. Rare Metal Materials and Engineering, 2005(z2): 1066-1069. doi:  10.3321/j.issn:1002-185X.2005.z2.123
    [40] 杨曜源, 李卫, 张力强, 等. ZnS晶体的化学气相沉积生长[J]. 人工晶体学报, 2004(1): 92-95. doi:  10.3969/j.issn.1000-985X.2004.01.020

    YANG Yaoyuan, LI Wei, ZHANG Liqiang, et al. Growth of ZnS crystals by CVD technique[J]. Journal of Synthetic Crystals, 2004(1): 92-95. doi:  10.3969/j.issn.1000-985X.2004.01.020
    [41] McCloy J, Tustison R. Chemical Vapor Deposited Zinc Sulfide[M]. Washington: SPIE Press, 2013.
    [42] WU S, ZHAO J, ZHAO Y, et al. Preparation, composition, and mechanical properties of CVD polycrystalline ZnS[J]. Infrared Physics & Technology, 2019, 98: 23-26.
    [43] 杨德雨, 杨海, 李红卫, 等. CVD-ZnS胞状生长现象抑制方法[J]. 红外与激光工程, 2018, 47(11): 359-364. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201811049.htm

    YANG Deyu, YANG Hai, LI Hongwei, et al. Counteracting methods of nodular growth in CVD-ZnS[J]. Infrared and Laser Engineering, 2018, 47(11): 359-364. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201811049.htm
    [44] 杨海, 魏乃光, 杨德雨, 等. CVD-ZnS胞状生长现象对材料结构与性能的影响[J]. 人工晶体学报, 2019, 48(7): 1233-1239. doi:  10.3969/j.issn.1000-985X.2019.07.009

    YANG Hai, WEI Naiguang, YANG Deyu, et al. Effect of Cellular Growth on Structure and Performance of CVD-ZnS[J]. Journal of Synthetic Crystals, 2019, 48(7): 1233-1239. doi:  10.3969/j.issn.1000-985X.2019.07.009
    [45] YANG H, ZHANG P, JIANG L, et al. Study on the twins and textures in CVDZnS[J]. Applied Physics A-Materials Science & Processing, 2020, 126(2): 59-65.
    [46] WEI N, YANG H, YANG D, et al. Recrystallization mechanism of abnormal large grains during long growth of CVD-ZnS[J]. Journal of Crystal Growth, 2019, 517: 48-53. doi:  10.1016/j.jcrysgro.2019.04.006
    [47] WU S, ZHAO J, ZHAO Y J, et al. Preparation and optical properties of transparent polycrystalline ZnS bulk materials[C]//Proc. of SPIE, 2018, 10826: 108261I.
    [48] Harris D. Thermal, structural, and optical properties of Cleartran® multispectral zinc sulfide[J]. Optical Engineering, 2008, 47(11): 114001. doi:  10.1117/1.3006123
    [49] Harris D. Development of hot-pressed and chemical-vapor-deposited zinc sulfide and zinc selenide in the United States for optical windows [C]//Proc. of SPIE, 2007, 6545: 654502.
    [50] Yashina E V, Gavrishchuk E M, Ikonnikov V B. Mechanisms of polycrystalline CVD ZnS densification during hot isostatic pressing[J]. Inorganic Materials, 2004, 40(9): 901-904. doi:  10.1023/B:INMA.0000041317.61466.d6
    [51] Ramavath P, Biswas P, Johnson R, et al. Hot isostatic pressing of ZnS powder and CVD ZnS ceramics: comparative evaluation of physico -chemical, microstructural and transmission properties[J]. Transactions of the Indian Ceramic Society, 2014, 73(4): 299-302. doi:  10.1080/0371750X.2014.931252
    [52] Ramavath P, Mahender V, Hareesh U, et al. Fracture behaviour of chemical vapour deposited and hot isostatically pressed zinc sulphide ceramics[J]. Materials Science and Engineering A, 2011, 528: 5030-5035. doi:  10.1016/j.msea.2011.03.031
    [53] Shchurov A F, Gavrishchuk E M, Ikonnikov V B. Effect of hot isostatic pressing on the elastic and optical properties of polycrystalline CVD ZnS[J]. Inorganic Materials, 2004, 40(4): 400-403. doi:  10.1023/B:INMA.0000023964.67549.6b
    [54] Biswas P, Kumar R, Ramavath P. Effect of post-CVD thermal treatments on crystallographic orientation, microstructure, mechanical and optical properties of ZnS ceramics[J]. Journal of Alloys and Compounds, 2010, 496: 273-277. doi:  10.1016/j.jallcom.2010.01.120
    [55] LI G, WEI N, YANG H, et al. Structural, morphological, optical properties of CVDZnS and HIPZnS[J]. Applied Physics A, Materials Science & Processing, 2020, 126(108): 1-7.
    [56] McCloy J S, Korenstein R, Zelinski B. Effects of temperature, pressure, and metal promoter on the recrystallized structure and optical transmission of chemical vapor deposited zinc sulfide[J]. Journal of the American Ceramic Society, 2009, 92(8): 1725-1731. doi:  10.1111/j.1551-2916.2009.03123.x
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  84
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-07
  • 修回日期:  2021-09-13
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回