留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗反射膜对衍射光学元件衍射效率的影响分析

杨亮亮 夏寅聪 陆玉灿

杨亮亮, 夏寅聪, 陆玉灿. 抗反射膜对衍射光学元件衍射效率的影响分析[J]. 红外技术, 2021, 43(10): 930-933.
引用本文: 杨亮亮, 夏寅聪, 陆玉灿. 抗反射膜对衍射光学元件衍射效率的影响分析[J]. 红外技术, 2021, 43(10): 930-933.
YANG Liangliang, XIA Yincong, LU Yucan. Effect of Antireflection Films on Diffraction Efficiency of Diffractive Optical Element[J]. Infrared Technology , 2021, 43(10): 930-933.
Citation: YANG Liangliang, XIA Yincong, LU Yucan. Effect of Antireflection Films on Diffraction Efficiency of Diffractive Optical Element[J]. Infrared Technology , 2021, 43(10): 930-933.

抗反射膜对衍射光学元件衍射效率的影响分析

基金项目: 

江苏省高校自然科学研究项目 19KJD140005

详细信息
    作者简介:

    杨亮亮(1986-),女,副教授,博士,主要从事衍射光学和光学设计方面的研究。E-mail:yang_liangliang@163.com

  • 中图分类号: O439

Effect of Antireflection Films on Diffraction Efficiency of Diffractive Optical Element

  • 摘要: 针对抗反射膜引入的附加位相,分析了衍射光学元件的衍射效率,提出了含有抗反射膜的衍射光学元件的优化设计方法。以工作在可见光波段的衍射光学元件为例,对比分析了采用传统方法和优化方法设计的衍射光学元件的衍射效率。结果表明:抗反射膜对衍射光学元件的衍射效率和带宽积分平均衍射效率的影响是不可忽略的。针对正入射和30°斜入射两种工作状态,采用优化设计方法得到的衍射光学元件的带宽积分平均衍射效率高于94%。
  • 图  1  考虑抗反射膜的衍射光学元件结构

    Figure  1.  Structure of DOEs with antireflection film

    图  2  四层膜系的抗反射膜示意图

    Figure  2.  Schematic diagram of the antireflection film with four-layer film system

    图  3  衍射光学元件的衍射效率

    Figure  3.  Diffraction efficiency of the DOE

    图  4  衍射光学元件优化后的衍射效率

    Figure  4.  Optimized diffraction efficiency of the DOE

    表  1  四层膜系膜层参数

    Table  1.   Parameters of four-layer film

    Material of coating Refractive index Thickness/nm
    SiO2 1.46 83
    Ta2O5 2.10 108
    SiO2 1.46 24
    Ta2O5 2.10 15
    下载: 导出CSV

    表  2  衍射光学元件的带宽积分平均衍射效率

    Table  2.   Bandwidth integral average diffraction efficiency(BIADE) of the DOE

    Incident angle 30°
    Before optimized 20.824% 16.921%
    After optimized 94.749% 94.765%
    下载: 导出CSV
  • [1] HUANG Zhi, BAI Jian, LU Tianxiong, et al. Stray light analysis and suppression of panoramic annular lens[J]. Opt. Express, 2013, 21(9): 10810-10820. doi:  10.1364/OE.21.010810
    [2] 孙林, 崔庆丰. 成像光学系统杂光系数分析与计算[J]. 激光与光电子学进展, 2018, 55(12): 122901. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201812059.htm

    SUN Lin, CUI Qingfeng. Analysis and calculation of veiling glare index of optical imaging systems[J]. Laser & Optoelectronics Progress, 2018, 55(12): 122901. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201812059.htm
    [3] HUANG Chan, ZHANG Miaomiao, CHANG Yuyang, et al. Directional polarimetric camera stray light analysis and correction[J]. Appl. Opt., 2019, 58(26): 7042-7049. doi:  10.1364/AO.58.007042
    [4] 沃伦J. 史密斯. 现代光学工程[M]. 4版: 北京: 化学工业出版社, 2011.

    Warren J Smith. Modern Optical Engineering[M]. Fourth Edition: Beijing: Chemical Industry Press, 2011.
    [5] 马新尖, 司志华, 杨东, 等. 三层氮化硅减反射膜在单晶硅太阳电池中的应用[J]. 激光与光电子学进展, 2018, 55(6): 061602. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201806044.htm

    MA Xinjian, SI Zhihua, YANG Dong, et al. Application of three-layer silicon nitride antireflection coatings in mono-crystalline silicon solar cells[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061602. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201806044.htm
    [6] 王伦, 薛常喜, 兰喜瑞, 等. 紫外光固化有机-无机纳米复合材料成型衍射光学元件制造技术[J]. 光学学报, 2019, 39(7): 0722001.

    WANG Lun, XUE Changxi, LAN Xirui, et al. Manufacturing technology of diffractive optical elements formed by ultraviolet-cured organic -inorganic nanocomposites[J]. Acta Optica Sinica, 2019, 39(7): 0722001.
    [7] 杨亮亮, 赵勇兵, 唐健, 等. 温度与微结构高度误差对衍射光学元件衍射效率的影响研究[J]. 红外技术, 2020, 42(3): 213-217. http://hwjs.nvir.cn/article/id/hwjs202003002

    YANG Liangliang, ZHAO Yongbing, TANG Jian, et al. Research on the influence of temperature and microstructure height error on diffraction efficiency for diffractive optical elements[J]. Infrared Technology, 2020, 42(3): 213-217. http://hwjs.nvir.cn/article/id/hwjs202003002
    [8] Dobrowolski J A, Brian T Sullivan. Universal antireflection coatings for substrates for the visible spectral region[J]. Appl. Opt., 1996, 35(25): 4993-4997. doi:  10.1364/AO.35.004993
    [9] 于天燕, 朱福荣, 刘定权, 等. 硫化锌透镜中长波红外宽带增透膜的研制[J]. 光学学报, 2005, 25(2): 270-273. doi:  10.3321/j.issn:0253-2239.2005.02.028

    YU Tianyan, ZHU Furong, LIU Dingquan, et al. Design and deposition of broadband IR antireflection coatings on ZnS lenses[J]. Acta Optica Sinica, 2005, 25(2): 270-273. doi:  10.3321/j.issn:0253-2239.2005.02.028
    [10] Gaĭnutdinov I S, Shuvalov N Yu, Sabirov R S, et al. Antireflection coatings on germanium and silicon substrates in the 3–5-μm and 8–12-μm windows of IR transparency[J]. J. Opt. Technol., 2009, 76(5): 302-305. doi:  10.1364/JOT.76.000302
    [11] Zarei Moghadam R, Ahmadvand H, Jannesari M. Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate[J]. Infrared Physics & Technology, 2016, 75: 18-21. http://www.onacademic.com/detail/journal_1000038957200910_2ccb.html
    [12] 程海娟, 于晓辉, 彭浪, 等. Ge基底LaF3-ZnS-Ge高耐用中波红外增透膜[J]. 红外与激光工程, 2019, 48(11): 1117001. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201911036.htm

    CHENG Haijuan, YU Xiaohui, PENG Lang, et al. LaF3-ZnS-Ge high-durability MWIR antireflective film on Ge substrate[J]. Infrared and Laser Engineering, 2019, 48(11): 1117001. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201911036.htm
    [13] 毛珊, 赵建林. 镀有增透膜的多层衍射光学元件的优化设计方法[J]. 光学学报, 2019, 39(3): 0305001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201903008.htm

    MAO Shan, ZHAO Jianlin. Optimal design for multi-layer diffractive optical elements with antireflection films[J]. Acta Optica Sinica, 2019, 39(3): 0305001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201903008.htm
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  128
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-21
  • 修回日期:  2020-07-02
  • 刊出日期:  2021-10-20

目录

    /

    返回文章
    返回