留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

芯片级节流制冷器流动特性数值计算及制冷性能实验研究

童欣 李家鹏 邱杰 夏明 槐阳 谢坤圆 陈俊元

童欣, 李家鹏, 邱杰, 夏明, 槐阳, 谢坤圆, 陈俊元. 芯片级节流制冷器流动特性数值计算及制冷性能实验研究[J]. 红外技术, 2024, 46(4): 467-474.
引用本文: 童欣, 李家鹏, 邱杰, 夏明, 槐阳, 谢坤圆, 陈俊元. 芯片级节流制冷器流动特性数值计算及制冷性能实验研究[J]. 红外技术, 2024, 46(4): 467-474.
TONG Xin, LI Jiapeng, QIU Jie, XIA Ming, HUAI Yang, XIE Kunyuan, CHEN Junyuan. Numerical and Experimental Study of Flow Characteristics and Cooling Performance of Micro Miniature Refrigerators[J]. Infrared Technology , 2024, 46(4): 467-474.
Citation: TONG Xin, LI Jiapeng, QIU Jie, XIA Ming, HUAI Yang, XIE Kunyuan, CHEN Junyuan. Numerical and Experimental Study of Flow Characteristics and Cooling Performance of Micro Miniature Refrigerators[J]. Infrared Technology , 2024, 46(4): 467-474.

芯片级节流制冷器流动特性数值计算及制冷性能实验研究

详细信息
    作者简介:

    童欣(1992-),男,工程师,博士研究生,主要从事微型节流制冷器方面研究。E-mail:291740057@qq.com

  • 中图分类号: TP39

Numerical and Experimental Study of Flow Characteristics and Cooling Performance of Micro Miniature Refrigerators

  • 摘要: 芯片级节流制冷器(简称MMR)是一种采用微加工工艺制成的新型节流制冷器,其轴向尺寸大幅短于传统节流制冷器,能够显著降低与之适配的红外探测器体积。为研究MMR的工作特性,建立了适用于高压力工况下气体物性沿流动方向显著变化的微槽道流动计算模型,该模型与实验验证结果符合良好。进一步在流动模型的基础上增加了微槽道换热、制冷器槽道分布和外形尺寸计算。根据计算模型制造了MMR样机并对其进行了实验研究,样机流量实验数据与计算模型符合良好。该样机在10 MPa的氮气和氩气工况下分别达到了110 K、119 K的制冷温度,制冷量分别为231 mW、479 mW,降温时间分别为250 s、70 s优于国外MMR性能,并且能够满足红外探测器对于节流制冷器的制冷性能需求。
  • 图  1  节流毛细管进口

    Figure  1.  Throttling capillary inlet

    图  2  节流特性流量实验设备及原理

    Figure  2.  Flow rate experimental equipment and schematic diagram of throttling effect

    图  3  内径0.3 mm、0.4 mm毛细管搭配10~50 mm节流段流量实验及理论计算

    Figure  3.  Experimental and calculation results of capillaries with 0.3, 0.4 mm internal diameter and 10-50 mm throttling length

    图  4  MMR换热器微元

    Figure  4.  Infinitesimal of MMR heat exchanger

    图  5  MMR高低压换热器温度及高压换热器压力分布

    Figure  5.  Temperature distribution in MMR high and low pressure heat exchagers and pressure distribution in high pressure heat exchanger

    图  6  快速启动节流制冷器及MMR高压换热器流道形式

    Figure  6.  Rapid cool down JT cooler and MMR flow channel pattern

    图  7  MMR实验样机

    Figure  7.  MMR experimental prototype

    图  8  MMR性能测试系统原理示意图

    Figure  8.  Schematic diagram of MMR performance testing system

    图  9  MMR气路连接实物图

    Figure  9.  MMR gas passage connection

    图  10  MMR流量实验值与计算值

    Figure  10.  Experimental and calculation results of MMR flow rate

    图  11  MMR实验样机与Twente大学MMR降温曲线

    Figure  11.  Cool down curves of MMR prototype and MMR hybrid cooler from Twente

  • [1] 李家鹏. 带有预冷级的波纹管自调式快速节流制冷器的研究[D]. 北京: 中国兵器科学院, 2016.

    LI J P. Research on Bellows Self Adjusting Rapid Throttling Refrigerator with Pre cooling Stage[D]. Beijing: Chinese Academy of Ordnance Sciences, 2016.
    [2] Little W A. Design and construction of microminiature cryogenic refrigerators, future trends in superconducting electronics[C]// Proc. of APS Conf., 1978, 44: 421-424.
    [3] 陈国邦. 最新低温制冷技术[M]. 北京: 机械工业出版社, 2003.

    CHEN G B. Low Temperature Engineering Materials[M]. Beijing: China Machine Press, 2003.
    [4] Larry D, Capara. Microelectronic System with Integral Cryocooler, and Its Fabrication and Use: US, 6621071 B2[P]. 2003-9-16.
    [5] Dominique C, Cottereau. Joule-Thomson Cooler: US, 6202422 B1[P]. 2001-3-20.
    [6] Ike C, Ambrose. Stacked Multistage Joule-Thomson Cryostat: US, 5590538[P]. 1997-1-7.
    [7] Beskok A, Karniadakis G E, Trimmer W. Rarefaction and compressibility effects in gas microflows[J]. Fluid Engineering, 1996, 118: 448-455. doi:  10.1115/1.2817779
    [8] Berg H R, Seldam C A, Gulik P S. Compressible Laminar flow in a capillary[J]. Fluid Mechanics, 1993, 246: 1-20. doi:  10.1017/S0022112093000011
    [9] Harley J C, Huang Y F, Bau H H, et al. Gas Flow in Microchannels[J]. Journal of Fluid Mechanics, 1995, 284: 257-274. doi:  10.1017/S0022112095000358
    [10] Tae W K, Tae S P. Size effect on compressible flow and heat transfer in microtube with rarefaction and viscous dissipation[J]. Numerical Heat Transfer, 2019, 76(11): 1-18.
    [11] Stephen E T, Lok C L, Mohammad F, et al. Experimental investigation of gas flow in microchannels[J]. Journal of Heat Transfer, 2004, 126: 753-763. doi:  10.1115/1.1797036
    [12] Arkilic E B, Breuer K S, Schmidt M A. Mass flow and tangential momentum accomodation in silicon micromachined channels[J]. Fluid Mech, 2001, 437: 29-43. doi:  10.1017/S0022112001004128
    [13] WU P Y, Little W A. Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators[J]. Cryogenics, 1983: 273-277(DOI:  10.1016/0011-2275(83)90150-9).
    [14] Marco S M, Han L S. A note on limiting laminar Nusselt number in ducts with constant temperature gradient by analogy to thin-plate theory[J]. Journal of Fluids Engineering, 1955, 77(5): 625-630.
    [15] 李晓永, 王玲, 洪晓麦, 等. 微型节流制冷器降温时间的优化研究[J]. 真空与低温, 2021, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW202103011.htm

    LI X Y, WANG L, HONG X M, et al. The optimization on the cooldown time of a miniature JT cooler[J]. Vacuum and Cryogenics, 2021, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW202103011.htm
    [16] Hsieh C K, SU K C. Thermal radiative properties of glass from 0.32 to 206 μm[J]. Solar Energy, 1979, 22(1): 37-43. doi:  10.1016/0038-092X(79)90057-4
    [17] CAO H S, Vanapalli S, Holland H J, et al. Characterization of a thermoelectric/Joule-Thomson hybrid microcooler[J]. Cryogenics, 2016, 77: 36-42. doi:  10.1016/j.cryogenics.2016.04.012
  • 加载中
图(11)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  12
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-23
  • 修回日期:  2023-10-23
  • 刊出日期:  2024-04-20

目录

    /

    返回文章
    返回