留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅基BIB红外探测器研究进展

马兴招 唐利斌 张玉平 左文彬 王善力 姬荣斌

马兴招, 唐利斌, 张玉平, 左文彬, 王善力, 姬荣斌. 硅基BIB红外探测器研究进展[J]. 红外技术, 2023, 45(1): 1-14.
引用本文: 马兴招, 唐利斌, 张玉平, 左文彬, 王善力, 姬荣斌. 硅基BIB红外探测器研究进展[J]. 红外技术, 2023, 45(1): 1-14.
MA Xingzhao, TANG Libin, ZHANG Yuping, ZUO Wenbin, WANG Shanli, JI Rongbin. Research Progress of Silicon-based BIB Infrared Detector[J]. Infrared Technology , 2023, 45(1): 1-14.
Citation: MA Xingzhao, TANG Libin, ZHANG Yuping, ZUO Wenbin, WANG Shanli, JI Rongbin. Research Progress of Silicon-based BIB Infrared Detector[J]. Infrared Technology , 2023, 45(1): 1-14.

硅基BIB红外探测器研究进展

基金项目: 

国家重点研发计划 2019YFB2203404

云南省创新团队项目 2018HC020

详细信息
    作者简介:

    马兴招(1995-),男,硕士研究生,研究方向是硅基异质结光电探测材料与器件

    通讯作者:

    唐利斌(1978-),男,正高级工程师,博士生导师,主要从事光电材料与器件的研究。E-mail: scitang@163.com

  • 中图分类号: TN215

Research Progress of Silicon-based BIB Infrared Detector

  • 摘要: 以锗基和硅基为主的阻挡杂质带(blocked impurity band,BIB)红外探测器的兴起有力推进了红外天文学的快速发展,其中硅基BIB红外探测器在特定波长的航天航空领域有着不可替代的地位。国外对硅基BIB红外探测器的研究已有40多年,以美国航空航天局(NASA)为主的科研机构已经实现了硅基BIB红外探测器在天文领域的诸多应用,而国内对硅基BIB红外探测器的研究尚处于起步阶段。本文首先阐述了硅基BIB红外探测器的工作原理,然后简单概述了器件结构和制备工艺,并对不同类型的硅基BIB探测器的性能进行了对比分析,之后介绍了其在天文探测中的应用,最后对硅基BIB红外探测器未来的发展进行了展望。
  • 图  1  硅基BIB红外探测器与其他类型红外探测器的探测波长范围及工作温度比较

    Figure  1.  Comparisons of the detection wavelength range and operating temperature of silicon-based BIB infrared detectors with other types of infrared detectors

    图  2  硅基BIB红外探测器的结构和工作原理:(a) 非本征硅光电导探测器的工作原理示意图[10];(b) 硅基BIB红外探测器的工作原理图[11];(c) Si: As BIB红外探测器结构示意图[13];(d) Si: Sb BIB红外探测器的器件结构图[14];(e) 背照射式Si: Sb BIB探测器的结构示意图,其中Nd为中性施主的密度,Nd+为电离施主的浓度,Na-为电离受主的浓度[15];(f) Si: Sb BIB探测器的红外吸收层在正的反偏电压下的平衡电荷分布图[15]

    Figure  2.  Structures and working mechanisms of silicon-based BIB infrared detectors: (a) Schematic diagram of the working principle of the ESPC detector[10]; (b) Schematic diagram of the working principle of the silicon-based BIB infrared detector[11]; (c) Structure diagram of the Si: As BIB infrared detector[13]; (d) Structure diagram of the Si: Sb BIB infrared detector[14]; (e) Schematic diagram of the back-illuminated Si: Sb BIB, where Nd is the density of neutral donors, Nd+ is the ionized donor density, and Na- is the density of ionized acceptors[15]; (f) Equilibrium charge distributions for the positive reverse-biased operation for the Si: Sb BIB infrared detector[15]

    图  3  硅基BIB红外探测器的性能:(a) 用于Si: As IBC探测器辐射测试的低温杜瓦装置[38];(b) 测试及计算得到的Si: As IBC探测器的响应量子效率曲线[38];(c) Si: As IBC探测器的I-V测试曲线[38];(d) 金属管壳封装的Si: Sb BIB探测器[14];(e) Si: Sb BIB探测器的光谱量子效率曲线[14];(f) Si: Sb BIB探测器的暗电流与温度的关系[14];(g) Si: P BIB器件的PC光谱与远红外背景光谱,以及响应峰的指定[39];(h) Si: Ga BIB探测器的光谱量子效率[40];(i) Si: Ga BIB探测器与长波碲镉汞探测器的暗电流对比[40]

    Figure  3.  Performances of the silicon-based BIB infrared detectors: (a) Dewar configuration for Si: As IBC detector radiation testing[38]; (b) Responsive quantum efficiency curves of Si: As IBC detector[38]; (c) I-V testing curves of Si: As IBC detector[38]; (d) Metal shell packed Si: Sb BIB detector[14]; (e) Spectral quantum efficiency curve of Si: Sb BIB detector[14]; (f) Dark current as a function of temperature of Si: Sb BIB detector, measured at 1.5 V bias voltage[14]; (g) PC spectrum of the Si: P BIB device versus far-infrared background spectrum, and the designations of the response peak[39]; (h) Spectral QE of Si: Ga BIB detector[40]; (i) Dark current performance comparison of Si: Ga BIB detector with LWMCT detector[40]

    图  4  天文用硅基BIB红外探测器的发展历程

    Figure  4.  Developments of silicon-based BIB infrared detectors for astronomical applications

    图  5  国外硅基BIB红外探测器的研究进展:(a) 空间红外望远镜设备(SIRTF)上的128×128长波长红外焦平面组件[29];(b) DRS公司的HF1024焦平面阵列,封装在84针无铅芯片载体上[40];(c) 百万像素中红外阵列裸多路复用器[54];(d) 无掺杂单晶衬底晶圆[54];(e) Si: As BIB焦平面阵列的封装[55];(f) 256×256 Si: As IBC阵列及其航天封装[57];(g) 1024×1024 Si: As IBC阵列的红外传感器芯片[53];(h) 1024×1024 Si: As IBC阵列的读出电路[58];(i) 由双侧可粘扣的HF1024 Si: As和Si: Sb焦平面阵列组成的2048×2048焦平面阵列,像元间距为18 μm[40]

    Figure  5.  Research progresses of overseas silicon-based BIB infrared detectors: (a) SIRTF 128×128 long wavelength infrared focal plane array assembly[29]; (b) DRS HF1024 FPA packaged in 84-pin leadless chip carrier[40]; (c) A Mega pixel MIR bare multiplexer[54]; (d) Undoped single-crystal substrate wafer[54]; (e) Packaging of the BIB focal plane arrays[55]; (f) 256×256 Si: As IBC array in flight mount[57]; (g) Photo of a 1024×1024 Si: As IBC SCA[53]; (h) SB-291 ROIC for 1024×1024 Si: As IBC array[58]; (i) 2048×2048 FPA with 18-micron pixel pitch composed of 2-side buttable HF1024 Si: As and Si: Sb FPAs[40]

    图  6  国内硅基BIB红外探测器的研究进展:(a) 平面型Si: P BIB探测器结构示意图[65];(b) 垂直型Si: P BIB探测器模型[58];(c) Si: P BIB探测器在2 V偏压和不同温度下的响应光谱[58];(d) 等离子体调谐太赫兹探测器横截面示意图[59];(e) 不同周期性孔结构(PHSs)的Si: P BIB探测器的归一化光电流谱[59];(f) Si: Ga BIB探测器在不同功能区上的层状材料结构示意图[60];(g) Si: Ga BIB探测器不同温度下的响应谱[60];(h) 金属光栅/硅基BIB太赫兹探测器的工作原理图[61];(i) 有金属光栅的器件(参数:p=7 μm,d=5 μm,DR=2/7)与无金属光栅的器件的实验光谱响应对比[61]

    Figure  6.  Research progresses of domestic silicon-based BIB infrared detectors: (a) Schematic diagram of the planar type Si: P BIB detector structure[65]; (b) Vertical type Si: P BIB detector model[58]; (c) Response spectrum of the Si: P BIB detector at 2 V bias voltage with different temperatures[58]; (d) Schematic representation of the cross section of the plasma-tuning THz detector[59]; (e) The normalized photocurrent spectrum of the Si: P BIB detectors for different periodic pore structures (PHSs)[59]; (f) Schematic diagram of the layered material structure of the Si: Ga BIB detector in different functional areas[60]; (g) Response spectrum of the Si: Ga BIB detector at different temperatures[60]; (h) Mechanism of the metal-grating/silicon-based BIB THz detector[61]; (i) Comparison of the experimental spectral response of devices with metal gratings (parameters: p=7 μm, d=5 μm, DR=2/7) with devices with metal-free gratings[61]

    图  7  硅基BIB红外探测器的天文应用[72]:(a) 斯皮策太空望远镜;(b) 斯皮策太空望远镜观测到的“红蝴蝶”星系;(c) WISE捕捉的最古老的超新星RCW 86的图像;(d) 水瓶座/SAC-D航天探测器;(e) 平流层天文台;(f)平流层天文台捕捉的恒星合并的快照;(g) 詹姆斯·韦伯空间望远镜(JWST);(h) JWST的近红外照相机捕捉的第一张全彩图像;(i) COBE在太空中运行的示意图

    Figure  7.  Astronomical applications of the silicon-based BIB infrared detectors[72]: The spitzer space telescope; (b) The "red butterfly" galaxy was observed by the spitzer space telescope; (c) An image of the oldest supernova RCW 86 captured by WISE; (d) The aquarius/SAC-D space probe; (e) Stratospheric observatory for infrared astronomy; (f) Snapshot of stellar mergers captured by SOFIA; (g) The James Webb Space Telescope; (h)The first full color image captured by the near-infrared camera of the JWST; (i) Schematic representation of the cosmic background explorer operating in space

    表  1  硅基BIB红外探测器的部分工艺参数

    Table  1.   Partial process parameters of the silicon-based BIB infrared detector

    Year Material Thickness of IRAL/μm Thickness of blocking layer/μm Doping concentration of IRAL/cm-3 Fabrication method of epitaxial layer Institution Ref.
    1979 Si: As 6−10 1−4 7×1017 CVD Rockwell [11]
    1992 Si: Sb 17 3.5 1−8×1017 CVD Rockwell [15]
    1999 Si: B 4.5 3 1×1018 - - [16]
    2007 Si: As 10 - 4×1018 - DRS [17]
    2007 Si: P - - 4×1018 - DRS [17]
    2018 Si: As 15 - 1×1018 - NIST [18]
    下载: 导出CSV

    表  2  国外公司生产的硅基BIB红外探测器的性能参数

    Table  2.   Performance parameters of silicon-based BIB infrared detectors produced by foreign companies

    Year Material Technology FPA format Pixel size/μm2 Pixel pitch/μm Operating temperature range/K Wavelength
    range/μm
    Dark current Quantum efficiency/% Institution Applications Ref.
    2012 Si: Sb BIB 1024×1024 18 - 5-12 14-38 0.1 e/s 60 DRS Wide-field infrared survey explorer [14]
    1992 Si: Sb BIB 128×128 - - 7 2-40 - - Rockwell Space infrared telescope facility [15]
    2018 Si: As BIB - - - 7-10 2-30 10-12 A/mm2 60 NIST Missile defense transfer radiometer [18]
    1986 Si: As BIB 10×50 - - 12 - 12.3 pA - Rockwell - [19]
    1991 Si: As BIB 128×128 75 - 11 - < 0.1 nA - Rockwell Space infrared telescope facility [20]
    1993 Si: As BIB 256×256 30 - 12 - 18 e-/s 57 HTC Space infrared telescope facility [21]
    1995 Si: Ga ESPC 128×192 75 - ≤10 5-17 0 30 LETI/LIR European transonic windtunnel [22]
    1998 Si: As BIB 256×256 30 - 6-7 - < 100 e-/s 40 RVS Infrared imaging surveyor [23]
    1998 Si: As BIB 320×240 - 50 6 2-28 100 e-/s 40-55 SBRC SUBARU [24]
    2000 Si: As BIB 256×256 - 25 6 5-28 3.8 e-/s 84 RVS Space infrared telescope facility [25]
    2001 Si: As BIB 320×240 - 50 6-12 2-28 ≤100 e-/s > 40 RVS Mid-infrared spectrometer and imager [26]
    2001 Si: As BIB 1024×1024 - 27 6-8 5-30 0.3 e-/s 45 RVS Next generation space telescope [27]
    2001 Si: As BIB 1024×1024 - 27 6 5-30 < 1 e-/s 50 RVS Stratospheric observatory for infrared astronomy [28]
    2003 Si: As BIB 128×128 - 75 - - 0.49-2.9 e-/s 84 DRS Wide-field infrared explorer [29]
    2003 Si: Sb BIB 128×128 - 75 - - 5.3-12.9 e-/s 51 DRS Wide-field infrared explorer [29]
    2003 Si: As BIB 256×256 50 - 4.7 5-25 - 56 DRS Stratospheric observatory for infrared astronomy [30]
    2004 Si: As BIB 256×256 25 - 6.7-7.1 5-28 0.1 e-/s > 50 RVS James Webb space telescope [31]
    2005 Si: As BIB 1024×1024 - 18 6 5-28 < 10 e-/s > 57 DRS Wide-field infrared survey explorer/James Webb space telescope [32]
    2006 Si: As BIB 1024×1024 - 18 7.8 7.5-28 < 100 e-/s > 60 DRS Wide-field infrared survey explorer [33]
    2008 Si: As BIB 1024×1024 30 - 7-9 3-28 1 e-/s > 40 RVS AQUARIUS [34]
    下载: 导出CSV
  • [1] McCreight C R, McKelvey M E, Goebel J H, et al. Detector arrays for low-background space infrared astronomy[C]//Infrared detectors, Sensors, and Focal Plane Arrays of SPIE, 1986, 686: 66-75.
    [2] Szmulowicz F, Madarasz F L. Blocked impurity band detectors—an analytical model: figures of merit[J]. Journal of Applied Physics, 1987, 62(6): 2533-2540. doi:  10.1063/1.339466
    [3] Battersby C, Armus L, Bergin E, et al. The origins space telescope[J]. Nature Astronomy, 2018, 2(8): 596-599. doi:  10.1038/s41550-018-0540-y
    [4] 刘恩科, 朱秉升, 罗晋生. 半导体物理学: 7版[M]. 北京: 电子工业出版社, 2017.

    LIU Enke, ZHU Bingsheng, LUO Jingsheng. The Physics of Semiconductors: 7th Edition[M]. Beijing: Publishing House of Electronics Industry, 2017.
    [5] CHEN H C, LIN C C, HAN H W, et al. Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers[J]. Optics Express, 2011, 19(105): A1141-A1147.
    [6] JUANG J Y, ZHOU K, BANG J H, et al. Improved photovoltaic performance of Si nanowire solar cells integrated with ZnSe quantum dots[J]. The Journal of Physical Chemistry C, 2012, 116(23): 12409-12414. doi:  10.1021/jp301683q
    [7] WU C, Crouch C H, ZHAO L, et al. Near-unity below-band-gap absorption by microstructured silicon[J]. Applied Physics Letters, 2001, 78(13): 1850-1852. doi:  10.1063/1.1358846
    [8] Crouch C, Carey J, Shen M, et al. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation[J]. Appl Phys A, 2004, 79: 1635-1641. doi:  10.1007/s00339-004-2676-0
    [9] ZHANG T, Ahmad W, LIU B, et al. Broadband infrared response of sulfur hyperdoped silicon under femtosecond laser irradiation[J]. Materials Letters, 2017, 196: 16-19. doi:  10.1016/j.matlet.2017.03.011
    [10] 王占国, 郑有炓. 半导体材料研究进展[M]. 北京: 高等教育出版社, 2012.

    WANG Zhanguo, ZHENG Youliao. Research Progress in Semiconductor Materials[M]. Beijing: Publishing House of Higher Education, 2018.
    [11] Petroff M D, Stapelbroek M G. Blocked Impurity Band Detectors: 4568 960[P]. U.S. Patent, 1986-02-04.
    [12] Petroff M D, Stapelbroek M G. Responsivity and noise models of blocked impurity band detectors[C]//Proc. IRIS Specialty Group on Infrared Detectors, 1984, 2.
    [13] Rieke G H. Infrared detector arrays for astronomy[J]. Annu. Rev. Astron. Astrophys. , 2007, 45: 77-115. doi:  10.1146/annurev.astro.44.051905.092436
    [14] Khalap V, Hogue H. Antimony-doped silicon blocked impurity band (BIB) arrays for low flux applications[C]//Infrared Sensors, Devices, and Applications Ⅱ. International Society for Optics and Photonics, 2012, 8512: 85120O.
    [15] Huffman J E, Crouse A G, Halleck B L, et al. Si: Sb blocked impurity band detectors for infrared astronomy[J]. Journal of Applied Physics, 1992, 72(1): 273-275. doi:  10.1063/1.352127
    [16] Asadauskas L, Brazis R, Leotin J. Optical phonon line in boron-doped silicon BIB structures[C]//Materials Science Forum. Trans Tech Publications Ltd., 1999, 297: 361-364.
    [17] Hogue H H, Guptill M T, Monson J C, et al. Far-infrared blocked impurity band detector development[C]//Infrared Spaceborne Remote Sensing and Instrumentation XV of SPIE, 2007, 6678: 63-73.
    [18] Woods S I, Proctor J E, Jung T M, et al. Wideband infrared trap detector based upon doped silicon photocurrent devices[J]. Applied Optics, 2018, 57(18): D82-D89. doi:  10.1364/AO.57.000D82
    [19] Stetson S B, Reynolds D B, Stapelbroek M G, et al. Design and performance of blocked-impurity-band detector focal plane arrays[C]//Infrared Detectors, Sensors, and Focal Plane Arrays of SPIE, 1986, 686: 48-65.
    [20] Noel R A. Large-area blocked-impurity-band focal plane array development[C]//Infrared Detectors and Focal Plane Arraysof SPIE, 1992, 1685: 250-259.
    [21] Lum N A, Asbrock J F, White R, et al. Low-noise, low-temperature 256 ×256 Si: As IBC staring FPA[C]//Infrared Detectors and Instrumentation of SPIE, 1993, 1946: 100-109.
    [22] Suffis S, Caes M, Deliot P, et al. Characterization of 128×192 Si: Ga focal plane arrays: study of nonuniformity, stability of its correction, and application for the CRYSTAL camera[C]//Infrared Detectors and Focal Plane Arraysof SPIE, 1998, 3379: 235-248.
    [23] Matsuhara H. IRC: an infrared camera on board the IRIS[C]//Infrared Astronomical Instrumentation of SPIE, 1998, 3354: 915-921.
    [24] Sohn E, Schneider E R, Cruz-Gonzales I, et al. Mid-infrared camera/spectrograph for OAN/SPM[C]//Infrared Astronomical Instrumentation, 1998, 3354: 822-824.
    [25] McMurray Jr R E, Johnson R R, McCreight C R, et al. Si: As IBC array performance for SIRTF/IRAC[C]//Infrared Spaceborne Remote Sensingof SPIE, 2000, 4131: 62-69.
    [26] Deutsch L K, Hora J L, Adams J D, et al. MIRSI: a mid-infrared spectrometer and imager[C]//Instrument Design and Performance for Optical/Infrared Ground-based Telescopes of SPIE, 2003, 4841: 106-116.
    [27] Ennico K A, McKelvey M E, McCreight C R, et al. Large format Si: As IBC array performance for NGST and future IR space telescope applications[C]//IR Space Telescopes and Instruments of SPIE, 2003, 4850: 890-901.
    [28] Ennico K A, Greene T P, McCreight C R, et al. Development and testing of a 1024×1024 pixel Si: As IBC detector for SOFIA-like applications[C]//Airborne Telescope Systemsof SPIE, 2003, 4857: 155-165.
    [29] Hogue H H, Guptill M L, Reynolds D, et al. Space mid-IR detectors from DRS[C]//IR Space Telescopes and Instruments, 2003, 4850: 880-889.
    [30] Adams J D, Herter T L, Keller L D, et al. Testing of mid-infrared detector arrays for FORCAST[C]//Optical and Infrared Detectors for Astronomy of SPIE, 2004, 5499: 442-451.
    [31] Love P J, Hoffman A W, Lum N A, et al. 1024×1024 Si: As IBC detector arrays for JWST MIRI[C]//Focal Plane Arrays for Space Telescopesof SPIE, 2005, 5902: 58-66.
    [32] Mainzer A K, Hong J, Stapelbroek M G, et al. A new large-well 1024×1024 Si: As detector for the mid-infrared[C]//Infrared and Photoelectronic Imagers and Detector Devices of SPIE, 2005, 5881: 253-260.
    [33] Mainzer A, Larsen M, Stapelbroek M G, et al. Characterization of flight detector arrays for the wide-field infrared survey explorer[C]//High Energy, Optical, and Infrared Detectors for Astronomyof SPIE, 2008, 7021: 302-313.
    [34] Ives D, Finger G, Jakob G, et al. AQUARIUS: the next generation mid-IR detector for ground-based astronomy[C]//High Energy, Optical, and Infrared Detectors for Astronomyof SPIE, 2012, 8453: 296-308.
    [35] Reynolds D B, Seib D H, Stetson S B, et al. Blocked impurity band hybrid infrared focal plane arrays for astronomy[J]. IEEE Transactions on Nuclear Science, 1989, 36(1): 857-862. doi:  10.1109/23.34565
    [36] Petroff M D, Stapelbroek M G. Blocked Impurity Band Detectors, Radiation Hard, High Performance LWIR Detectors[C]//Proceedings, IRIS Specialty Group on Infrared Detectors, 1980: 48-62.
    [37] Mainzer A, Larsen M, Stapelbroek M G, et al. Characterization of flight detector arrays for the wide-field infrared survey explorer[C]//High Energy, Optical, and Infrared Detectors for Astronomyof SPIE, 2008, 7021: 302-313.
    [38] Ando K J, Hoffman A W, Love P J, et al. Development of Si: As impurity band conduction (IBC) detectors for mid-infrared applications[C]//Infrared Technology and Applications XXIX, 2003, 5074: 648-657.
    [39] LIAO K, LI N, LIU X, et al. Ion-implanted Si: P blocked-impurity-band photodetectors for far-infrared and terahertz radiation detection[C]//International Symposium on Photoelectronic Detection and Imaging on Terahertz Technologies and Applications of SPIE, 2013, 8909: 257-265.
    [40] Hogue H, Atkins E, Reynolds D, et al. Update on blocked impurity band detector technology from DRS[C]//Detectors and Imaging Devices: Infrared, Focal Plane, Single Photon. International Society for Optics and Photonics, 2010, 7780: 778004.
    [41] Sclar N. Properties of doped silicon and germanium infrared detectors[J]. Progress in Quantum Electronics, 1984, 9(3): 149-257. doi:  10.1016/0079-6727(84)90001-6
    [42] Kleinhans W A, Petroff M D, Stapelbroek M G. Hybrid Si: As BIBIB Detector Arrays[C/OL]//Proc. of IRIS Specialty Group on Infrared Detectors, 1984: https://www.researchgate.net/profile/George-Gull/publication/234236444_Improved_SiAs_BIBIB_Back-Illuminated_Blocked-Impurity-Band_hybrid_arrays/links/0f317537a14b676810000000/Improved-SiAs-BIBIB-Back-Illuminated-Blocked-Impurity-Band-hybrid-arrays.pdf.
    [43] Fowler A M, Joyce R R. Status of the NOAO evaluation of the Hughes 20x64 Si: As impurity band conduction array[C]//Instrumentation in Astronomy VⅡ, 1990, 1235: 151-159.
    [44] Larsen M F, Sargent S D, Tansock Jr J J. On-orbit goniometric calibration for the SPIRIT Ⅲ radiometer[C]//Signal and Data Processing of Small Targets of SPIE, 1998, 3373: 32-43.
    [45] Hoffman A W, Love P J, Ando K J, et al. Large infrared and visible arrays for low-background applications: an overview of current developments at Raytheon[C]//Optical and Infrared Detectors for Astronomy, 2004, 5499: 240-249.
    [46] Mainzer A K, Hogue H, Stapelbroek M, et al. Characterization of a megapixel mid-infrared array for high background applications[C]//High Energy, Optical, and Infrared Detectors for Astronomy Ⅲ, 2008, 7021: 70210T.
    [47] Hogue H H, Mattson R B, Stapelbroek M G, et al. Focal plane detectors for the WISE 12-and 23-µm bands[C]//Infrared Systems and Photoelectronic Technologyof SPIE, 2007, 6660: 194-202.
    [48] Mainzer A K, Hong J, Stapelbroek M G, et al. A new large-well 1024×1024 Si: As detector for the mid-infrared[C]//Infrared and Photoelectronic Imagers and Detector Devices, 2005, 5881: 58810Y.
    [49] McMurray Jr R E, Johnson R R, McCreight C R, et al. Si: As IBC array performance for SIRTF/IRAC[C]//Infrared Spaceborne Remote Sensingof SPIE, 2000, 4131: 62-69.
    [50] Ando K J, Hoffman A W, Love P J, et al. Development of Si: As impurity band conduction (IBC) detectors for mid-infrared applications[C]//Infrared Technology and Applications XXIX, 2003, 5074: 648-657.
    [51] Starr B, Mears L, Fulk C, et al. RVS large format arrays for astronomy[C]//High Energy, Optical, and Infrared Detectors for Astronomyof SPIE, 2016, 9915: 929-942.
    [52] Miyata T, Sako S, Nakamura T, et al. Development of a new mid-infrared instrument for the TAO 6.5-m Telescope[C]//Ground-based and Airborne Instrumentation for Astronomy Ⅲ, 2010, 7735: 77353P.
    [53] Stacey G J, Hayward T L, Latvakoski H M, et al. KWIC: a widefield mid-infrared array camera/spectrometer for the KAO[C]//Infrared Detectors and Instrumentation, 1993, 1946: 238-248.
    [54] Van Cleve J E, Herter T L, Butturini R, et al. Evaluation of Si: As and Si: Sb blocked-impurity-band detectors for SIRTF and WIRE[C]//Infrared Spaceborne Remote Sensingof SPIE, 1995, 2553: 502-513.
    [55] Dotson J L, McKelvey M, McMurray Jr R, et al. Cryogenic testing of a 1024×1024 Si: As array for WISE[C]//Focal Plane Arrays for Space Telescopes Ⅲ, 2007, 6690: 66900F.
    [56] WANG C, LI N, DAI N, et al. High performance infrared detectors compatible with CMOS-circuit process[J]. Chinese Physics B, 2021, 30(5): 050702. doi:  10.1088/1674-1056/abd6fb
    [57] ZHU H, ZHU J, HU W, et al. Temperature-sensitive mechanism for silicon blocked-impurity-band photodetectors[J]. Applied Physics Letters, 2021, 119(19): 191104. doi:  10.1063/5.0065468
    [58] ZHU H, ZHU J, XU H, et al. Design and fabrication of plasmonic tuned THz detectors by periodic hole structures[J]. Infrared Physics & Technology, 2019, 99: 45-48.
    [59] DENG K, ZHANG K, LI Q, et al. High-operating temperature far-infrared Si: Ga blocked-impurity-band detectors[J]. Applied Physics Letters, 2022, 120(21): 211103. doi:  10.1063/5.0092774
    [60] CHEN Y, TONG W, WANG B, et al. The absorption enhancement effect of metal gratings integrated Silicon-based Blocked-Impurity-Band (BIB) terahertz detectors[C]//2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) of IEEE, 2021: 43-44.
    [61] XIAO Y, ZHU H, DENG K, et al. Progress and challenges in blocked impurity band infrared detectors for space-based astronomy[J]. Science China Physics, Mechanics & Astronomy, 2022, 65(8): 1-17.
    [62] Herter T L, Hayward T L, Houck J R, et al. Mid-and far-infrared hybrid focal plane arrays for astronomy[C]//Infrared Astronomical Instrumentation of SPIE, 1998, 3354: 109-115.
    [63] Stapelbroek M G, Hogue H H, Atkins E W, et al. Silicon for visible-to-VLWIR photon detection[C]//Infrared Technology and Applications XXIX, 2003, 5074: 166-172.
    [64] Bamberg J A, Zaun N H. Design and performance of the cryogenic focal plane optics assembly for the Infrared Astronomical Satellite (IRAS)[C]//Cryogenic Optical Systems and Instrumentsof SPIE, 1985, 509: 94-102.
    [65] Werner M W, Roellig T L, Low F J, et al. The Spitzer space telescope mission[J]. The Astrophysical Journal Supplement Series, 2004, 154(1): 1. doi:  10.1086/422992
    [66] Mainzer A K, Eisenhardt P, Wright E L, et al. Preliminary design of the wide-field infrared survey explorer (WISE)[C]//UV/Optical/IR Space Telescopes: Innovative Technologies and ConceptsOf SPIE, 2005, 5899: 262-273.
    [67] Gardner, J.P., Mather, J.C., Clampin, M., et al. The James Webb Space telescope[J]. Space Science Reviews, 2006, 123(4): 485-606. doi:  10.1007/s11214-006-8315-7
    [68] Huffman J E. Infrared detectors for 2-to 220-um astronomy[C]//Infrared Detectors: State of the Art Ⅱ, 1994, 2274: 157-169.
    [69] Herter T, Stacey G, Gull G, et al. FORCAST: a WIDE-field infrared camera for SOFIA[C]//American Astronomical Society Meeting Abstracts, 1997, 191: 09.02.
    [70] Mather J C, Cheng E S, Eplee Jr R E, et al. A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite[J]. The Astrophysical Journal, 1990, 354: L37-L40. doi:  10.1086/185717
    [71] Rauter P, Fromherz T, Winnerl S, et al. Terahertz Si: B blocked-impurity-band detectors defined by nonepitaxial methods[J]. Applied Physics Letters, 2008, 93(26): 261104. doi:  10.1063/1.3059559
    [72] Mary W. Jackson NASA Headquarters. NASA Missions[DB/OL]. https://www.nasa.gov/missions.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  67
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-24
  • 修回日期:  2023-01-06
  • 刊出日期:  2023-01-20

目录

    /

    返回文章
    返回