留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地面点源中波红外探测建模与验证研究

王楚越 杨利峰 何道刚

王楚越, 杨利峰, 何道刚. 地面点源中波红外探测建模与验证研究[J]. 红外技术, 2023, 45(4): 357-363.
引用本文: 王楚越, 杨利峰, 何道刚. 地面点源中波红外探测建模与验证研究[J]. 红外技术, 2023, 45(4): 357-363.
WANG Chuyue, YANG Lifeng, HE Daogang. Modeling and Verification of Ground Point Source for Mid-Wave Infrared Detection[J]. Infrared Technology , 2023, 45(4): 357-363.
Citation: WANG Chuyue, YANG Lifeng, HE Daogang. Modeling and Verification of Ground Point Source for Mid-Wave Infrared Detection[J]. Infrared Technology , 2023, 45(4): 357-363.

地面点源中波红外探测建模与验证研究

基金项目: 

国家重大科研仪器研制项目 61627804

详细信息
    作者简介:

    王楚越(1997-),男,河南省许昌市人,硕士,主要从事红外探测器相关的研究,E-mail:wcy199763@126.com

    通讯作者:

    何道刚(1976-),男,安徽省六安市人,硕士生导师,主要从事空间红外光电系统设计方面的研究,E-mail:hedaogang@mail.sitp.ac.cn

  • 中图分类号: TP391.9

Modeling and Verification of Ground Point Source for Mid-Wave Infrared Detection

  • 摘要: 红外系统在大范围内对异常热源点目标的探测需要平衡像元分辨率与温度灵敏度之间的关系。在探测器规模一定时,现有星载红外载荷存在幅宽大时灵敏度不够、空间分辨率高时幅宽小的问题。针对上述问题,本文提出利用时间延时积分(time delay intergration,TDI)算法处理图像的大视场异常点热源探测初步方案,在一定条件下,达到探测所需的温度灵敏度要求时,能做到217 km×122 km的理论幅宽。同时搭建了一套高灵敏度红外成像实验系统,开展了测试与模拟探测实验,结果表明本方案在实现202 km×114 km幅宽情况下,灵敏度性能约37 mK,满足大范围异常点热源探测的要求。考虑到目标和背景的太阳光反射率等问题,实际应用时取200 m像元分辨率,对应幅宽128 km×102 km。
  • 图  1  热源所在目标微元示意图

    Figure  1.  Schematic diagram of the target micro element where the heat source is located

    图  2  NETD与探测器空间分辨率的关系

    Figure  2.  The relationship between NETD and detector spatial resolution

    图  3  光学镜头焦距与空间分辨率之间几何关系示意图

    Figure  3.  Schematic diagram of geometric relationship between optical lens focal length and spatial resolution

    图  4  较长积分时间下采集的图像经不同阶TDI处理后的NETD

    Figure  4.  NETD of images collected under a longer integration time processed by different levels of TDI

    图  5  TDI算法处理后的图像非均匀性噪声与均方根噪声

    Figure  5.  Image non-uniformity noise and root mean square noise processed by TDI algorithm

    图  6  推扫成像模拟探测实验方案示意图

    Figure  6.  Schematic diagram of push-broom imaging simulation detection experiment scheme

    图  7  推扫成像模拟探测实验现场示意图:(a) 探测器系统及电控转台实物;(b) 探测器系统与目标位置关系实物图;(c) 模拟热源实物

    Figure  7.  Schematic diagram of the push-broom imaging simulation detection experiment site (a) The physical diagram of the detector system and the electric control turntable; (b) The physical diagram of the positional relationship between the detector system and the target; (c) The physical diagram of the simulated heat source

    图  8  模拟探测实验结果:(a) 热源像元及其同一行附近的像元DN值曲线;(b) 经8阶TDI处理后的热源像元及其同一行附近的像元DN值曲线;(c) 经16阶TDI处理后的热源像元及其同一行附近的像元DN值曲线;(d) 经25阶TDI处理后的热源像元及其同一行附近的像元DN值曲线

    Figure  8.  The results of the simulated detection experiment: (a) The DN value curve of the heat source pixel and the pixel near the same row; (b) The heat source pixel and the DN value curve of the pixel near the same row after 8th-order TDI processing; (c) The DN value curve of the heat source pixel after 16-level TDI processing and the pixel near the same row; (d) The heat source pixel after the 25-level TDI processing and the DN value curve of the pixel near the same row

    表  1  红外探测系统参数理论值

    Table  1.   Theoretical values of detector parameters that meet the heat source detection standards of preset scenarios

    Parameter Value
    Working wavelength 3.7~4.8 μm
    F# 2
    Scan width 217 km×122 km
    Orbit height 500 km
    NETD ≤6.25 mK
    Focal length 21.6 mm
    Distance between the center of pixels 15 μm×15 μm
    Spatial resolution 346 m
    下载: 导出CSV

    表  2  部分阶数TDI算法处理后模拟热源所在像元DN值与背景像元DN值均值差值

    Table  2.   The difference between the DN value of the pixel where the simulated heat source is located and the average DN value of the background pixel after processing by the partial order TDI algorithm

    TDI stage DN for pixel contain the heat source DN1 Average DN for background pixels DN2 DN1− DN2
    Raw picture 579 552.8 26.2
    8 576 549 26.2
    16 582 536.9 45.1
    25 570 524.4 45.6
    下载: 导出CSV
  • [1] 李伟克, 殷继艳, 郭赞全, 等. 2019年世界代表性国家和地区森林火灾发送概况分析[J]. 消防科学与技术, 2020, 39(9): 1280-1284. doi:  10.3969/j.issn.1009-0029.2020.09.026

    LI Weike, YIN Jiyan, GUO Zanquan, et al. Analysis of forest fires in representative countries and regions in the world in 2019[J]. Fire Science and Technology, 2020, 39(9): 1280-1284. doi:  10.3969/j.issn.1009-0029.2020.09.026
    [2] 栾婷婷, 王亚坤, 张馨仪. 2008-2018年我国森林火灾事故统计分析[J]. 安全, 2020, 41(10): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ANQU202010010.htm

    LUAN Tingting, WANG Yakun, ZHANG Xinyi. Statistical analysis of forest fire accidents in china from 2008 to 2018[J]. Safety & Security, 2020, 41(10): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ANQU202010010.htm
    [3] 李文岩. 宽幅航天相机焦面关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020.

    LI Wenyan. Research on the key technology of the focal plane of a wide-format space camera [D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2020.
    [4] 刘妍妍. 大视场长焦平面TDI CCD拼接相机最优成像技术研究[D]. 长春: 吉林大学, 2016.

    LIU Yanyan. Research on Optimal Imaging Technology of Large Field of View and Long Focal Plane TDI CCD Stitching Camera[D]. Changchun: Jilin University, 2016.
    [5] 胡芬, 金淑英. 高分辨率光学遥感卫星宽幅成像技术发展浅析[J]. 地理信息世界, 2017, 24(5): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-CHRK201705010.htm

    HU Fen, JIN Shuying. Analysis on the development of high-resolution optical remote sensing satellite wide-format imaging technology[J]. Geographic Information World, 2017, 24(5): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-CHRK201705010.htm
    [6] 吕旺, 董瑶海, 沈毅力, 等. 静止气象卫星轨道运动的成像补偿研究[J]. 遥感学报, 2019, 23(2): 185-195. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201902001.htm

    LYU Wang, DONG Yaohai, SHEN Yili, et al. Research on imaging compensation of orbital motion of stationary meteorological satellites[J]. Journal of Remote Sensing, 2019, 23(2): 185-195. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201902001.htm
    [7] 覃先林, 李晓彤, 刘树超, 等. 中国林火卫星遥感预警监测技术研究进展[J]. 遥感学报, 2020(5): 511-520. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202005002.htm

    QIN Xianlin, LI Xiaotong, LIU Shuchao, et al. Forest fire early warning and monitoring techniques using satellite remote sensing in China[J]. Journal of Remote Sensing, 2020(5): 511-520. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202005002.htm
    [8] 张博铭, 苏晓峰, 崔坤, 等. 开窗高帧频下红外面阵数字TDI实现方式研究[J]. 激光与红外, 2016, 46(10): 1250-1255. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201610017.htm

    ZHANG Boming, SU Xiaofeng, CUI Kun, et al. Research on digital TDI implementation way based on windowing and high frame rate infrared FPA[J]. Laser & Infrared, 2016, 46(10): 1250-1255. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201610017.htm
    [9] NIE Kaiming, YAO Suying. A 128-stage analog accumulator for CMOS TDI image sensor[J]. IEEE Trans. CIR-CUI-TS and Systems, 2014, 61(7): 1952-1961.
    [10] Lepage G, Bogaerts Jan, Meynants Guy. Time-delay-integration architectures in CMOS image sensors[J]. IEEE Trans. Electron Device-S, 2009, 56(11): 2524-2533.
    [11] 周世椿. 高级红外光电工程导论[M]. 北京: 科学出版社, 2014.

    ZHOU Shichun. Introduction to Advanced Infrared Optoelectronic Engineering[M]. Beijing: Science Press, 2014.
    [12] 彭焕良. 红外焦平面热成像技术的发展[J]. 激光与红外, 2006, 36(S1) : 776-780. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW2006S1010.htm

    PENG Huanliang. The development of the IRFPA thermal imaging technology[J]. Laser & Infrared, 2006, 36(S1): 776-780. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW2006S1010.htm
    [13] 董海, 罗冠泰, 余明权, 等. 利用IRFPA的开窗功能实现成像系统的双帧频双画幅输出[J]. 激光与红外, 2011, 41(3): 278-283. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201103009.htm

    DONG Hai, LUO Guantai, YU Mingquan, et al. Double frame rate and double picture implementation in IRFPA with region-of-interest capability imaging system[J]. Laser & Infrared, 2011, 41(3): 278-283. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201103009.htm
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  28
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-26
  • 修回日期:  2021-07-01
  • 刊出日期:  2023-04-20

目录

    /

    返回文章
    返回