留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化镓光阴极薄膜材料表面光电压谱特性

高剑森 刘健

高剑森, 刘健. 氮化镓光阴极薄膜材料表面光电压谱特性[J]. 红外技术, 2022, 44(8): 798-803.
引用本文: 高剑森, 刘健. 氮化镓光阴极薄膜材料表面光电压谱特性[J]. 红外技术, 2022, 44(8): 798-803.
GAO Jiansen, LIU Jian. Characteristics of Photovoltage Spectrum on Surfaces of Gallium Nitride Photocathode Film Materials[J]. Infrared Technology , 2022, 44(8): 798-803.
Citation: GAO Jiansen, LIU Jian. Characteristics of Photovoltage Spectrum on Surfaces of Gallium Nitride Photocathode Film Materials[J]. Infrared Technology , 2022, 44(8): 798-803.

氮化镓光阴极薄膜材料表面光电压谱特性

基金项目: 

宿迁市科技计划项目 K201923

详细信息
    作者简介:

    高剑森(1967-),男,教授,主要从事材料物理与器件方向的研究,曾入选江苏省第四期“333人才”第三层次培养对象,第九批“六大高峰人才项目”。E-mail:2849246831@qq.com

  • 中图分类号: TN304.23

Characteristics of Photovoltage Spectrum on Surfaces of Gallium Nitride Photocathode Film Materials

  • 摘要: 在蓝宝石基底上外延生长了多层结构氮化镓光阴极薄膜材料并进行表面光电压测试;对比分析了掺杂类型、厚度和掺杂方式对氮化镓材料表面光电压的影响,确定了多层结构氮化镓材料表面光电压产生机理;借助亚带隙激光辅助,针对均匀掺杂和δ-掺杂氮化镓(GaN)光电阴极薄膜材料进行了表面光电压测试;实验数据表明,相较于均匀掺杂,δ-掺杂可以获得更好生长质量,但也提高了在能级(Ev+0.65)eV~(Ev+1.07)eV范围的缺陷态密度。
  • 图  1  实验样品结构

    Figure  1.  Experimental sample structure

    图  2  表面光电压测试系统整体结构示意图

    Figure  2.  Overall structure diagram of surface photovoltage test structure

    图  3  样品3~样品7能带结构简图

    注:EVECEF分别为导带、价带和费米能级;w1w2w3分别为三个空间电荷区宽度;VSVD1VD2为三个空间电荷区电势,箭头表示电场方向。

    Figure  3.  Simplified diagram of the band structure of samples 3 to 7

    Note: EV, EC and EF are conduction band, valence band and Fermi level respectively; w1, w2 and w3 are the widths of three space charge regions respectively; VS, VD1 and VD2 are the three space charge region potentials, and the arrows indicate the direction of the electric field

    图  4  样品1表面光电压曲线及微分曲线

    Figure  4.  Surface photovoltage curve and differential curve of sample 1

    图  5  不同掺杂类型表面光电压曲线

    Figure  5.  Surface photovoltage curves of different doping types

    图  6  不同厚度样品表面光电压谱

    Figure  6.  Surface photovoltage spectra of samples with different thickness

    图  7  不同掺杂方式P-GaN/N-GaN/Al2O3结构表面光电压谱

    Figure  7.  Surface photovoltage spectra of P-GaN/N-GaN/Al2O3 structures with different doping methods

    图  8  不同掺杂方式P-GaN/N-GaN/Al2O3结构激光辅助表面光电压谱

    Figure  8.  Laser-assisted surface photovoltage spectroscopy of P-GaN/N-GaN/Al2O3 structure with different doping methods

    表  1  在基底上外延生长的样品规格

    Table  1.   Specifications of samples grown epitaxially on the substrate

    Samples Thickness of epitaxial layer/μm Doping type
    1 2 Undoped
    2 2 N-type
    3 0.2 P-type
    4 0.5 P-type
    5 2 P-type
    6 0.0032 P-type
    7 0.5 P-type
    下载: 导出CSV
  • [1] WANG X H, ZHANG Y J. Negative electron affinity GaN photocathode with Mg delta-doping[J]. Optik, 2018, 168: 278-281. doi:  10.1016/j.ijleo.2018.04.112
    [2] CUI Z, LI E, KE X, et al. Adsorption of alkali-metal atoms on GaN nanowires photocathode[J]. Applied Surface Science, 2017, 423: 829-835. doi:  10.1016/j.apsusc.2017.06.233
    [3] XIA S H, LIU L, DIAO Y, et al. Research on quantum efficiency and photoemission characteristics of exponential-doping GaN nanowire photocathode[J]. Journal of Materials Science, 2017, 52(21): 12795-12805. doi:  10.1007/s10853-017-1394-x
    [4] 王晓晖. 纤锌矿结构GaN(0001)面的光电发射性能研究[D]. 南京: 南京理工大学, 2013.

    WANG X H. Study on Photoemission Properties of Wurtzite GaN(0001) Surface[D]. Nanjing: Nanjing University of Science and Technology, 2013.
    [5] 李彤, 王怀兵, 刘建平, 等. Delta掺杂制备p-GaN薄膜及其电性能研究[J]. 物理学报, 2007, 56(2): 1036-1040. doi:  10.3321/j.issn:1000-3290.2007.02.069

    LI T, WANG H B, LIU J P, et al. Preparation of p-GaN thin films by Delta doping and their electrical properties[J]. Acta Physica Sinica, 2007, 56(2): 1036-1040. doi:  10.3321/j.issn:1000-3290.2007.02.069
    [6] 邢艳辉, 韩军, 邓军, 等. p型氮化镓不同掺杂方法研究[J]. 功能材料, 2007, 38(7): 1123-1131. doi:  10.3321/j.issn:1001-9731.2007.07.022

    XING Y H, HAN J, DENG J, et al. Study on different doping methods of P-type gallium nitride[J]. Functional Materials, 2007, 38(7): 1123-1131. doi:  10.3321/j.issn:1001-9731.2007.07.022
    [7] 王凯, 邢艳辉, 韩军, 等. 低源流量Delta掺杂p型GaN外延薄膜的研究[J]. 半导体光电, 2016, 37(2): 229-231. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201602018.htm

    WANG K, XING Y H, HAN J, et al. Study on delta-doped P-type GaN epitaxial films with low source flow[J]. Semiconductor Optoelectronics, 2016, 37(2): 229-231. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201602018.htm
    [8] LIU Q, CHEN C, Ruda H. Surface photovoltage in undoped semi-insulating GaAs[J]. Journal of Applied Physics, 1993, 74(12): 7492-7496. doi:  10.1063/1.354973
    [9] Kronik L, Shapira Y. Surface photovoltage phenomena: theory, experiment, and applications[J]. Surface Science Reports, 1999, 37(1-5): 1-206. doi:  10.1016/S0167-5729(99)00002-3
    [10] Olafsson H Ö, Gudmundsson J T, Svavarsson H G, et al. Hydrogen passivation of AlxGa1−xAs/GaAs studied by surface photovoltage spectroscopy[J]. Physica B: Condensed Matter, 1999, 273: 689-692.
    [11] Foussekis M, Ferguson J D, Baski A A, et al. Role of the surface in the electrical and optical properties of GaN[J]. Physica B Condensed Matter, 2009, 404(23-24): 4892-4895. doi:  10.1016/j.physb.2009.08.230
    [12] 赵德刚, 徐大鹏. 立方相pn结GaN的光伏效应[C]//全国固体薄膜学术会议, 2007, 115-117.

    ZHAO D G, XU D P. Photovoltaic effect of cubic PN junction GaN[C]//National Conference on Solid Film, 2007: 115-117.
    [13] ZHANG Q, WANG D, WEI X, et al. A study of the interface and the related electronic properties in n-Al0.35Ga0.65N/GaN heterostructure[J]. Thin Solid Films, 2005, 491: 242-248. doi:  10.1016/j.tsf.2005.06.017
    [14] 陈亮. 基于光电压谱的GaAs光电阴极评估技术研究[D]. 南京: 南京理工大学, 2012.

    CHEN L. Research on Assessment Technology of Photovoltage Spectroscopy for GaAs Photocathodes[D]. Nanjing: Nanjing University of Science and Technology, 2012.
    [15] Sharma T K, Porwal S, Kumar R, et al. Absorption edge determination of thick GaAs wafers using surface photovoltage spectroscopy[J]. Review of Scientific Instruments, 2002, 73(4): 1835-1840. doi:  10.1063/1.1449461
    [16] Jana D, Porwal S, Sharma T K, et al. Pump-probe surface photovoltage spectroscopy measurements on semiconductor epitaxial layers[J]. Review of Scientific Instruments, 2014, 85(4): 1-21.
    [17] 蒋联娇, 符斯列, 秦盈星, 等. N空位, Ga空位对GaN: Mn体系电磁性质和光学性质影响的第一性原理研究[J]. 功能材料, 2016, 47(12): 12139-12146. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201612023.htm

    JIANG L J, FU S L, QIN Y X, et al. First-principles study of the effect of GaN: Mn with N vacancy and Ga vacancy on electronic structures, ferromagnetism and optical properties[J]. Journal of Functional Materials, 2016, 47(12): 12139-12146. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201612023.htm
    [18] Schwarz R, Slobodin D, Wagner S. Differential surface photovoltage measurement of minority‐carrier diffusion length in thin films[J]. Applied Physics Letters, 1985, 47(7): 740-742. doi:  10.1063/1.96023
    [19] Chow T P, Ghezzo. SiC power devices. In III-Nitride, SiC, and diamond materials for electronic devices[J]. Material Research Society Symposium Proceedings, Gaskill D K, Brandt C D, Nemanich R J Eds, Pittsburgh, PA. 1996, 423: 69-73.
    [20] Park H Y, Jeon K N, Kim K J. Mg Delta-doping effect on a deep hole center related to electrical activation of a p-type GaN thin film[J]. Transactions on Electrical & Electronic Materials, 2010, 11(1): 37-41.
    [21] Liliental W Z, Benamara M, Swider W, et al. Ordering in bulk GaN: Mg samples: defects caused by Mg doping[J]. Physica B Condensed Matter, 1999, 273-274(3): 124-129.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  32
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 修回日期:  2022-03-18
  • 刊出日期:  2022-08-20

目录

    /

    返回文章
    返回