留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习与域自适应的工件涡流热成像的缺陷检测

张毅 范玉刚

张毅, 范玉刚. 基于深度学习与域自适应的工件涡流热成像的缺陷检测[J]. 红外技术, 2024, 46(3): 347-353.
引用本文: 张毅, 范玉刚. 基于深度学习与域自适应的工件涡流热成像的缺陷检测[J]. 红外技术, 2024, 46(3): 347-353.
ZHANG Yi, FAN Yugang. Defect Detection of Eddy Current Thermal Imaging of Workpiece Based on Deep Learning and Domain Adaptation[J]. Infrared Technology , 2024, 46(3): 347-353.
Citation: ZHANG Yi, FAN Yugang. Defect Detection of Eddy Current Thermal Imaging of Workpiece Based on Deep Learning and Domain Adaptation[J]. Infrared Technology , 2024, 46(3): 347-353.

基于深度学习与域自适应的工件涡流热成像的缺陷检测

基金项目: 

云南省科技厅项目 KKPT202203010

详细信息
    作者简介:

    张毅(1997-),男,四川眉山人,硕士研究生,主要从事涡流热成像缺陷检测、图像处理。E-mail:1946552068@qq.com

    通讯作者:

    范玉刚(1973-),男,山东省威海市人,副教授,主要从事涡流热成像检测技术、图像处理。E-mail:km72905566372@qq.com

  • 中图分类号: TP391

Defect Detection of Eddy Current Thermal Imaging of Workpiece Based on Deep Learning and Domain Adaptation

  • 摘要: 机械设备运行过程中,标记的故障样本量小,导致建立的模型故障诊断准确率低,为此本文提出一种结合深度学习与域自适应的工件涡流热成像的缺陷检测方法。首先将注意力机制引入深度残差网络ResNet50中,加强模型的特征提取能力;然后将源域和目标域数据送入改进的ResNet50网络中提取深度特征,并且在网络的全连接层中引入局部最大均值差异,用于缩小两域特征间的分布差异,以此实现相关子域的分布对齐;最后在网络的Softmax分类器中实现对工件金属材料的缺陷检测。在公开的磁瓦数据集和本文实验采集的金属板涡流红外图像数据集上进行实验,结果表明,本文方法对涡流红外图像的裂纹缺陷检测识别准确率较高,通过t分布随机邻居嵌入方法对分析结果可视化,验证了本文方法的优越性。
  • 图  1  领域自适应示意图

    Figure  1.  Schematic diagram of domain adaptation

    图  2  CBAM模块结构图

    Figure  2.  Structure diagram of CBAM module

    图  3  CBAM_ResNet50和子域自适应网络模型

    Figure  3.  CBAM_ResNet50 and subdomain adaptive network model

    图  4  涡流加热设备(左)和缺陷金属板(右)

    Figure  4.  Eddy current heating equipment (left) and defective metal plate (right)

    图  5  实验数据集示例

    Figure  5.  Example of experimental data set

    图  6  训练集和测试集精度对比图

    Figure  6.  Accuracy comparison diagram of training set and test set

    图  7  不同方法的精确度对比图

    Figure  7.  Accuracy comparison chart of different methods

    Magnetic tile data set→sheet metal data set

    图  8  不同方法的t-SNE特征可视化

    Figure  8.  Visualization of t-SNE features by different methods

    表  1  添加CBAM的ResNet50网络结构

    Table  1.   ResNet50 network structure with CBAM added

    Network layer Parameters Activation function
    Conv1 64×7×7 Relu
    CBAM 64×1×1
    7×7
    Sigmoid
    Conv2_x $ \left. {\begin{array}{*{20}{c}} {64 \times 1 \times 1} \\ {64 \times 3 \times 3} \\ {256 \times 1 \times 1} \end{array}} \right\} \times 3 $ Relu
    Conv3_x $ \left. {\begin{array}{*{20}{c}} {128 \times 1 \times 1} \\ {128 \times 3 \times 3} \\ {512 \times 1 \times 1} \end{array}} \right\} \times 4 $ Relu
    Conv4_x $ \left. {\begin{array}{*{20}{c}} {256 \times 1 \times 1} \\ {256 \times 3 \times 3} \\ {1024 \times 1 \times 1} \end{array}} \right\} \times 6 $ Relu
    Conv5_x $ \left. {\begin{array}{*{20}{c}} {512 \times 1 \times 1} \\ {512 \times 3 \times 3} \\ {2048 \times 1 \times 1} \end{array}} \right\} \times 3 $ Relu
    CBAM 2048×1×1
    7×7
    Sigmoid
    FC 2 Softmax
    下载: 导出CSV

    表  2  不同模型的检测精度

    Table  2.   Detection accuracy of different models %

    Methods Magnetic tile→sheet metal Sheet metal→magnetic tile Average accuracy
    ResNet50 63.93 59.18 61.56
    DAN 78.19 73.53 75.86
    ResNet50_LMMD 88.29 86.10 87.20
    This paper 90.11 86.93 88.52
    下载: 导出CSV
  • [1] 李宝芸, 范玉刚, 高阳. 基于OTSU和Canny算子的红外图像特征提取[J]. 陕西理工大学学报: 自然科学版, 2019, 35(6): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SXGX201906007.htm

    LI Baoyun, FAN Yugang, GAO Yang. Infrared image feature extraction based on OTSU and Canny operator[J]. Journal of Shaanxi University of Technology: Natural Science Edition, 2019, 35(6): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SXGX201906007.htm
    [2] PENG Y, HUANG S, HE Y, et al. Eddy current pulsed thermography for noncontact nondestructive inspection of motor winding defects[J]. IEEE Sensors Journal, 2020, 20(5): 2625-2634. doi:  10.1109/JSEN.2019.2952691
    [3] YI Q, Malekmohammadi H, TIAN G Y, et al. Quantitative evaluation of crack depths on thin aluminum plate using eddy current pulse-compression thermography[J]. IEEE Transations on Industrial Informatics, 2021, 16(6): 3963-3973.
    [4] 董绍江, 朱朋, 裴雪武, 等. 基于子领域自适应的变工况下滚动轴承故障诊断[J]. 吉林大学学报: 工学版, 2022, 52(2): 288-295. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202202004.htm

    DONG Shaojiang, ZHU Peng, PEI Xuewu, et al. Fault diagnosis of rolling bearing under variable operating conditions based on subdomain adaptation[J]. Journal of Jilin University: Engineering and Technology Edition, 2022, 52(2): 288-295. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202202004.htm
    [5] 姜万录, 岳毅, 张淑清, 等. 基于特征迁移学习的变工况下轴向柱塞泵故障诊断[J]. 农业工程学报, 2022, 38(5): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202205005.htm

    JIANG Wanlu, Yue Yi, ZHANG Shuqing, et al. Axial piston pump fault diagnosis under variable working conditions based on feature transfer learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(5): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202205005.htm
    [6] LONG M S, CAO Y, WANG J, et al. Learning transferable features with deep adaptation networks[C]//International Conference on Machine Learning, 2015: 97-105.
    [7] Ganin Y, Ustinova E, Ajakan H, et al. Domain-adversarial training of neural networks[J]. Journal of Machine Learning Research, 2016, 17(1): 2096-2030.
    [8] 陈佛计, 朱枫, 吴清潇, 等. 生成对抗网络及其在图像生成中的应用研究综述[J]. 计算机学报, 2021, 44(2): 347-369. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202102007.htm

    CHEN Foji, ZHU Feng, WU Qingxiao, et al. A survey about image generation with generative adversarial nets[J]. Chinese Journal of Computers, 2021, 44(2): 347-369. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202102007.htm
    [9] 王格格, 郭涛, 余游, 等. 基于生成对抗网络的无监督域适应分类模型[J]. 电子学报, 2020, 48(6): 1190-1197. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202006021.htm

    WANG Gege, GUO Tao, YU You, et al. Unsupervised domain adaptation classification model based on generative adversarial network[J]. Acta Electronica Sinica, 2020, 48(6): 1190-1197. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202006021.htm
    [10] ZHU Y C, ZHUANG F Z, WANG J D, et al. Deep subdomain adaptation network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020(99): 1-10.
    [11] Gretton A, Borgwardt K M, Rasch M J, et al. A kernel two-sample test[J]. Journal of Machine Learning Research, 2012, 13: 723-773.
    [12] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
    [13] 郝帅, 张旭, 马旭, 等. 基于CBAM-YOLOv5的煤矿输送带异物检测[J]. 煤炭学报, 2021, 1644: 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202211026.htm

    HAO Shuai, ZHANG Xu, MA Xu, et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society, 2021, 1644: 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202211026.htm
    [14] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision & Pattern Recognition, 2016: 770-778.
    [15] 吴静然, 刘建华, 崔冉. 子域适应无监督轴承故障诊断[J]. 振动与冲击, 2021, 40(15): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202115005.htm

    WU Jingran, LIU Jianhua, CUI Ran. Sub-domain adaptive unsupervised bearing fault diagnosis[J]. Journal of Vibration and Shock, 2021, 40(15): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202115005.htm
    [16] HUANG Y B, QIU C Y, YUAN K. Surface defect saliency of magnetic tile[J]. The Visual Computer, 2020, 36(1): 85-96. doi:  10.1007/s00371-018-1588-5
    [17] Laurens V D M, Hinton G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(2605): 2579-2605.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  10
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-15
  • 修回日期:  2023-01-31
  • 刊出日期:  2024-03-20

目录

    /

    返回文章
    返回