留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度加权引导滤波的红外图像增强方法

胡家珲 詹伟达 桂婷婷 石艳丽 顾星

胡家珲, 詹伟达, 桂婷婷, 石艳丽, 顾星. 基于多尺度加权引导滤波的红外图像增强方法[J]. 红外技术, 2022, 44(10): 1082-1088.
引用本文: 胡家珲, 詹伟达, 桂婷婷, 石艳丽, 顾星. 基于多尺度加权引导滤波的红外图像增强方法[J]. 红外技术, 2022, 44(10): 1082-1088.
HU Jiahui, ZHAN Weida, GUI Tingting, SHI Yanli, GU Xing. Infrared Image Enhancement Method Based on Multiscale Weighted Guided Filtering[J]. Infrared Technology , 2022, 44(10): 1082-1088.
Citation: HU Jiahui, ZHAN Weida, GUI Tingting, SHI Yanli, GU Xing. Infrared Image Enhancement Method Based on Multiscale Weighted Guided Filtering[J]. Infrared Technology , 2022, 44(10): 1082-1088.

基于多尺度加权引导滤波的红外图像增强方法

基金项目: 

吉林省发展与改革委员会创新能力建设专项 FG2021236JK

详细信息
    作者简介:

    胡家珲(1996-),男,山东临沂人,硕士研究生,主要从事机器视觉、图像增强等方面的研究。E-mail: hujiahuia@163.com

    通讯作者:

    詹伟达(1979-),男,吉林长春人,博士,教授,博士生导师,主要从事数字图像处理、红外图像技术和自动目标识别等方面的研究。E-mail:zhanweida@cust.edu.cn

  • 中图分类号: TP394.1;TH691.9

Infrared Image Enhancement Method Based on Multiscale Weighted Guided Filtering

  • 摘要: 现有的红外图像存在细节模糊、边缘和纹理不清晰的问题。针对上述问题,本文提出一种基于加权引导滤波的红外图像增强方法。首先,将图像通过带转向核的多尺度加权引导滤波进行分层处理,得到多幅含有细节信息的细节层图像和基础层图像;接着,对细节层采用基于Markov-Possion的最大后验概率算法和Gamma校正算法对细节层进行增强;然后,对基础层采用限制对比度的自适应直方图均衡算法进行对比度拉伸,最后,进行线性融合得到增强后的图像。综合主、客观实验结果,得出本文方法具有良好的细节增强效果,处理后的图像边缘和纹理信息比较突出,且算法在信息熵(IE),熵增强(EME)和平均梯度(AG)3个指标都有较优的计算结果。基本满足红外图像细节得到增强,边缘纹理清晰的需求。
  • 图  1  直方图的剪切和重新分配

    Figure  1.  Shear of histogram and redistribution

    图  2  MPMAP对细节层处理后效果对比图

    Figure  2.  MPMAP effect comparison diagram after detail layer processing

    图  3  本文算法流程

    Figure  3.  Flowchart of this algorithm

    图  4  第一场景增强效果对比

    Figure  4.  Comparison of enhanced effects in scene 1

    图  5  第二场景增强效果对比

    Figure  5.  Comparison of enhanced effects in scene 2

    图  6  第三场景增强效果对比

    Figure  6.  Comparison of enhanced effects in scene 3

    表  1  图 4对应图像IE,EME和AG指标

    Table  1.   IE, EME and AG indexes of Figure 4 corresponding images

    HE Gamma CLAHE Paper[10] Ours
    IE 7.9828 7.5672 7.7843 7.8271 7.8495
    EME 10.9885 7.3383 10.1227 6.5807 12.7727
    AG 0.0649 0.0425 0.1092 0.0495 0.1151
    下载: 导出CSV

    表  2  图 5对应图像IE,EME和AG指标

    Table  2.   IE, EME and AG indexes of Figure 5 corresponding images

    HE Gamma CLAHE Paper[10] Ours
    IE 7.9828 6.8359 7.446 7.2184 7.3183
    EME 5.8178 2.4591 6.0818 4.3463 7.4671
    AG 0.0175 0.0150 0.0272 0.0196 0.0317
    下载: 导出CSV

    表  3  图 6对应图像IE,EME和AG指标

    Table  3.   IE, EME and AG indexes of Figure 6 corresponding images

    HE Gamma CLAHE Paper[10] Ours
    IE 7.8740 7.5624 7.6260 7.5559 7.5566
    EME 4.5674 3.5398 6.3457 3.6904 6.5143
    AG 0.0204 0.0139 0.0206 0.0141 0.0211
    下载: 导出CSV
  • [1] 鞠默然, 罗海波, 刘广琦, 等. 采用空间注意力机制的红外弱小目标检测网络[J]. 光学精密工程, 2021, 29(4): 843-853. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202104021.htm

    JU M R, LUO H B, LIU G Q, et al. Infrared dim and small target detection network based on spatial attention mechanism[J]. Opt. Precision Eng., 2021, 29(4): 843-853. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202104021.htm
    [2] 赵尚男, 王灵杰, 张新, 等. 采用视觉特征整合的红外弱小目标检测[J]. 光学精密工程, 2020, 28(2): 497-506. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202002024.htm

    ZHAO S N, WANG L J, ZHANG X, et al. Detection of infrared dim small target based on visual feature integration [J]. Opt. Precision Eng., 2020, 28(2): 497-506. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202002024.htm
    [3] ZHU D P, ZHAN W D, JIANG Y C, et al. MIFFuse: a multi-level feature fusion network for infrared and visible images [J]. IEEE Access, 2021, 9: 130778-130792. doi:  10.1109/ACCESS.2021.3111905
    [4] 谷雨, 刘俊, 沈宏海, 等. 基于改进多尺度分形特征的红外图像弱小目标检测[J]. 光学精密工程, 2020, 28(6): 1375-1386. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202006016.htm

    GU Y, LIU J, SHEN H H, et al. Infrared dim-small target detection based on an improved multiscale fractal feature [J]. Opt. Precision Eng., 2020, 28(6): 1375-1386. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202006016.htm
    [5] WANG Z J, LUO Y Y, JIANG S Z, et al. An improved algorithm for adaptive infrared image enhancement based on guided filtering[J]. Spectroscopy and Spectral Analysis, 2020, 40(11): 3463-3467.
    [6] WANG Y F, BAI X Z. Intensity inhomogeneity suppressed fuzzy C-means for infrared pedestrian segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(9): 3361-3374.
    [7] ASHIBA H I, ASHIBA M I. Super-efficient enhancement algorithm for infrared night vision imaging system[J]. Multimedia Tools and Applications, 2021, 80(6): 9721-9747. doi:  10.1007/s11042-020-09928-w
    [8] JIANG Y C, LIU Y Q, ZHAN W D, et al. Lightweight dual-stream residual network for single image super-resolution[J]. IEEE Access, 2021, 9: 129890-129901. doi:  10.1109/ACCESS.2021.3112002
    [9] WANG J J, LI Y, CAO L, et al. Range-restricted pixel difference global histogram equalization for infrared image contrast enhancement[J]. Optical Review, 2021, 28(2): 145-158. doi:  10.1007/s10043-021-00645-9
    [10] WAN M J, GU G H, QIAN W X, et al. Infrared image enhancement using adaptive histogram partition and brightness correction[J]. Remote Sensing, 2018, 10(5): 682. doi:  10.3390/rs10050682
    [11] ZUO C, CHEN Q, LIU N, et al. Display and detail enhancement for high-dynamic-range infrared images[J]. Optical Engineering, 2011, 50(12): 127401.
    [12] LIU N, ZHAO D X. Detail enhancement for high -dynamic-range infrared images based on guided image filter[J]. Infrared Physics & Technology, 2014, 67: 138-147
    [13] CHEN F R, ZHANG J L, CAI JJ, et al. Infrared image adaptive enhancement guided by energy of gradient transformation and multiscale image fusion [J]. Applied Sciences, 2020, 10(18): 6262. doi:  10.3390/app10186262
    [14] SUN Z G, HAN B, LI J, et al. Weighted guided image filtering with steering Kernel[J]. IEEE Transactions on Image Processing, 2019, 29: 500-508.
    [15] HE K M, SUN J, TANG X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(6): 1397-1409.
    [16] LU Z W, LONG B Y, LI K, et al. Effective guided image filtering for contrast enhancement[J]. IEEE Signal Processing Letters, 2018, 25(10): 1585-1589. doi:  10.1109/LSP.2018.2867896
    [17] LI Z G, ZHENG J H, ZHU Z J, et al. Weighted guided image filtering [J]. IEEE Transactions on Image Processing, 2014, 24(1): 120-129.
    [18] TAKEDA H, FARSIU S, MILANFAR P. Kernel regression for image processing and reconstruction[J]. IEEE Transactions on Image Processing, 2007, 16(2): 349-366. doi:  10.1109/TIP.2006.888330
    [19] YAKNO M, MOHAMAD-Saleh J, IBRAHIM M Z. Dorsal hand vein image enhancement using fusion of CLAHE and fuzzy adaptive Gamma[J]. Sensors, 2021, 21(19): 6445. doi:  10.3390/s21196445
    [20] 刘秀, 刘咏, 林招荣. 最大后验概率算法在遥感图像复原中的应用[J]. 光学学报, 2013(B12): 206-212.

    LIU X, LIU Y, LIN Z R. Application of maximum a posteriori algorithm in remote sensing image reconstruction[J]. Acta Optica Sinica, 2013(B12): 206-212.
    [21] 刘秀, 金伟其, 徐超. 基于MPMAP序列红外图像高分辨力重建和非均匀性校正[J]. 电子学报, 2011, 39(9): 2103-2107. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201109025.htm

    LIU X, JIN W Q, XU C. High-resolution reconstruction and non-uniformity correction from images sequences based on Poisson-Markov model MAP[J]. Acta Electronica Sinica, 2011, 39(9): 2103-2107. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201109025.htm
    [22] AGAIAN S S, PANETTA K, GRIGORYAN A M. A new measure of image enhancement[C]//IASTED International Conference on Signal Processing & Communication, 2000: 19-22.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  54
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-13
  • 修回日期:  2021-12-26
  • 刊出日期:  2022-10-20

目录

    /

    返回文章
    返回