留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于小惯量红外稳定平台的复合电流控制方法

熊辉 林宇 张雁伟 李锐华 舒骏逸 阎歆婕 冯建伟

熊辉, 林宇, 张雁伟, 李锐华, 舒骏逸, 阎歆婕, 冯建伟. 一种基于小惯量红外稳定平台的复合电流控制方法[J]. 红外技术, 2021, 43(2): 116-126.
引用本文: 熊辉, 林宇, 张雁伟, 李锐华, 舒骏逸, 阎歆婕, 冯建伟. 一种基于小惯量红外稳定平台的复合电流控制方法[J]. 红外技术, 2021, 43(2): 116-126.
XIONG Hui, LIN Yu, ZHANG Yanwei, LI Ruihua, SHU Junyi, YAN Xinjie, FENG Jianwei. Composite Current Control Method for Small Inertia Infrared Stable Platforms[J]. Infrared Technology , 2021, 43(2): 116-126.
Citation: XIONG Hui, LIN Yu, ZHANG Yanwei, LI Ruihua, SHU Junyi, YAN Xinjie, FENG Jianwei. Composite Current Control Method for Small Inertia Infrared Stable Platforms[J]. Infrared Technology , 2021, 43(2): 116-126.

一种基于小惯量红外稳定平台的复合电流控制方法

详细信息
    作者简介:

    熊辉(1991-),男,硕士研究生,主要研究方向为无刷直流电机的伺服控制与驱动。E-mail:xh1270223693@163.com

    通讯作者:

    林宇(1972-),男,研究员级高级工程师,博士生导师,主要研究方向为光电系统。E-mail:lwlinyu@163.com

  • 中图分类号: TP271.4

Composite Current Control Method for Small Inertia Infrared Stable Platforms

  • 摘要: 小型化和高动态是红外成像稳定平台技术的发展趋势。由于转动惯量小,传统的PI型电流环控制难以克服反电动势的斜坡干扰,将降低小惯量红外稳定平台的动态响应。同时,高动态的小惯量红外稳定平台技术另一难点是平衡动态性和抗扰性能。为解决上述问题,本文提出一种基于无差拍预测控制和扩张状态观测的复合电流控制方法,有效提高了小转动惯量红外稳定平台的动态响应能力和抗干扰能力。仿真和实验结果表明,该复合电流控制方法将小惯量红外稳定平台电流环的调节时间缩短1/3,对速度响应的动态性能和抗干扰性能都有明显改善作用,而且具有很好的鲁棒性能。
  • 图  1  基于id=0的永磁同步电机速度、电流双闭环矢量控制框图

    Figure  1.  Diagram of double closed-loop vector control of PMSM based on id=0

    图  2  不同转动惯量J下反电动势对PI控制电流环性能的影响

    Figure  2.  The effect of the back-EMF on the PI current loop in different moment of inertia J

    图  3  基于无差拍电流预测控制的数字控制系统时序图

    Figure  3.  Sequence diagram of digital control system based on dead-beat current prediction

    图  4  无差拍预测控制的电流环响应曲线

    Figure  4.  The current response curve of dead-beat predictive control

    图  5  基于无差拍预测的复合电流控制原理框图

    Figure  5.  Schematic diagram of the composite current controller based on dead-beat prediction

    图  6  基于扩张状态观测的扰动前馈补偿模型

    Figure  6.  The disturbance feed forward compensation model based on ESO

    图  7  两种电流控制器的电流环性能对比

    Figure  7.  Comparison of current loop performance of two current controllers

    图  8  两种电流控制器对跟踪性能的影响

    Figure  8.  Effects of two current controllers on tracking performance

    图  9  ESO前馈补偿下两种电流控制器对抗扰性能的影响

    Figure  9.  Effects of two current controllers on anti-disturbance performance based on ESO feed forward compensation

    图  10  电流响应鲁棒性能对比

    Figure  10.  Comparison of current response robustness

    图  11  速度环抗扰鲁棒性能对比

    Figure  11.  Comparison of anti-disturbance robustness of the speed loop

    图  12  快速控制原型半实物仿真实验平台架构与实物图

    Figure  12.  Experiment platform architecture and physical drawing of RCP simulation

    图  13  两种电流控制方法的q轴电流响应性能对比

    Figure  13.  Comparison of q axis current response between two current control methods

    图  14  基于两种电流控制方法作用的低速阶跃响应曲线

    Figure  14.  Low-speed step response curve based on two current control methods

    图  15  基于两种电流控制方法作用的高速阶跃响应曲线

    Figure  15.  High-speed step response curve based on two current control methods

    图  16  基于不同电流控制方法作用的速度环抗扰动响应曲线

    Figure  16.  Anti-disturbance response curves of speed loop based on different current control methods

    表  1  小转动惯量的永磁同步电机参数

    Table  1.   The parameters of the PMSM

    Motor parameter Value Unit
    Moment of inertia 0.0069 kg·m2
    Rated voltage 24 V
    Armature resistance 0.63 Ω
    Armature inductance 4.73 mH
    Flux linkage of permanent magnets 0.075 Wb
    Number of pole pairs 16
    下载: 导出CSV

    表  2  基于两种电流控制方法作用的速度跟随对比

    Table  2.   Comparison of speed following performance based on two current control methods

    Given speed Performance PI Composite control
    1 r/min Settling time 15 ms 9 ms
    Response lag time 4 ms 1.8 ms
    Following error range ±0.32°/s ±0.17°/s
    60 r/min Settling time 0.19 s 0.14 s
    Response lag time 0.039 s 0.017 s
    Following error range ±0.26°/s ±0.07°/s
    下载: 导出CSV

    表  3  不同电流控制方法作用的速度环抗扰性能对比

    Table  3.   Comparison of anti-disturbance performance of speed loop under different current control methods

    Steady-state speed Performance PI+ESO Composite control
    1 r/min Speed fluctuation 24.3% 15.5%
    Recovering time 22 ms 13 ms
    60 r/min Speed fluctuation 5.33% 2.92%
    Recovering time 0.105 s 0.047 s
    下载: 导出CSV
  • [1] 白晓利. 导引头稳定平台伺服控制系统设计与研究[D]. 北京: 北京理工大学, 2017.

    BAI Xiaoli. Design and Research of Servo Control System for Seeker Stable Platform[D]. Beijing: Beijing Institute of Technology, 2017.
    [2] 李锐华, 林宇. 小型红外成像制导稳定平台控制算法研究[J]. 红外技术, 2014, 36(2): 142-147. http://hwjs.nvir.cn/article/id/hwjs201402011

    LI Ruihua, LIN Yu. Research on the control algorithm of lightweight infrared imaging guidance platform[J]. Infrared Technology, 2014, 36(2): 142-147. http://hwjs.nvir.cn/article/id/hwjs201402011
    [3] 王伟华, 肖曦. 永磁同步电机高动态响应电流控制方法研究[J]. 中国电机工程学报, 2013, 33(21): 117-123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201321014.htm

    WANG Weihua, Xiao Xi. Research on current control method of permanent magnet synchronous motor with high dynamic response[J]. Proceedings of the CSEE, 2013, 33(21): 117-123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201321014.htm
    [4] 牛里, 杨明, 刘可述, 等. 永磁同步电机电流预测控制算法[J]. 中国电机工程学报, 2012, 32(6): 131-137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201206017.htm

    NIU Li, YANG Ming, LIU Keshu, et al. Current predictive control algorithm for permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2012, 32(6): 131-137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201206017.htm
    [5] 孔德杰. 机载光电平台扰动力矩抑制和改善研究[D]. 长春: 中国科学院长春光学机密机械与物理研究所, 2013.

    KONG Dejie. Restraints and Improvement of Disturbance Torque of Airborne Optoelectronic Olatform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, China, 2013.
    [6] 蒋学程, 彭侠夫. 小转动惯量PMSM电流环二自由度内模控制[J]. 电机与控制学报, 2011, 15(8): 69-74. doi:  10.3969/j.issn.1007-449X.2011.08.013

    JIANG Xuecheng, PENG Xiafu. Two-degree-freedom internal model control for current loop of small rotational inertia PMSM[J]. Electric Machines and Control, 2011, 15(8): 69-74. doi:  10.3969/j.issn.1007-449X.2011.08.013
    [7] 杨明, 牛里, 王宏佳, 等. 微小转动惯量永磁同步电机电流环动态特性的研究[J]. 电机与控制学报, 2009, 13(6): 844-849. doi:  10.3969/j.issn.1007-449X.2009.06.011

    YANG Ming, NIU Li, WANG Hongjia, et al. Research on dynamic response of the current loop for PMSM with small inertia[J]. Electric Machines and Control, 2009, 13(6): 844-849. doi:  10.3969/j.issn.1007-449X.2009.06.011
    [8] 王宏佳. 微小型高性能永磁交流伺服系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    WANG Hongjia. Research on Minitype High Performance PM AC Servo System[D]. Harbin: Harbin Institute of Technology, 2012.
    [9] 刘红伟. 永磁同步电机控制策略及算法融合研究[D]. 成都: 中国科学院光电技术研究所, 2014.

    LIU Hongwei. Research on the Control Strategies and Their Syncretized Algorithm for Permanent Magnet Synchronous Motor[D]. Chengdu: The Institute of Optics and Electronics, Chinese Academy of Science, 2014.
    [10] 阮毅, 陈伯时. 电力拖动自动控制系统-运动控制系统[M]. 4版: 北京: 机械工业出版社, 2009.

    RUAN Yi, CHEN Boshi. Control systems of electric drives-Motion control systems[M]. 4th Edition: Beijing: China Machine Press, 2009.
    [11] Florent Morel, Xuefang Lin-Shi, Jean-Marie Rétif, et al. A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive[J]. IEEE Transactions on Industry Electronics, 2009, 56(7): 2715- 2728. doi:  10.1109/TIE.2009.2018429
    [12] Turker Turker, Umit Buyukkeles, A. Faruk Bakan. A robust predictive current controller for PMSM drives[J]. IEEE Transactions on Industry Electronics, 2016, 63(6): 3906-3914. doi:  10.1109/TIE.2016.2521338
    [13] 王宏佳, 徐殿国, 杨明. 永磁同步电机改进无差拍电流预测控制[J]. 电工技术学报, 2011, 26(6): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201106008.htm

    WANG Hongjia, XU Diangguo, YANG Ming. Improved deadbeat predictive current control strategy of permanent magnet motor drives[J]. Transaction of China Electrotechnical Society, 2011, 26(6): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201106008.htm
    [14] CHEN Wenhua, YANG Jun, GUO Lei, et al. Disturbance-observer-based control and related methods-an overview[J]. IEEE Transactions on Industry Electronics, 2016, 63(2): 1083-1095. doi:  10.1109/TIE.2015.2478397
    [15] 张海洋, 许海平, 方程, 等. 基于负载转矩观测器的直驱式永磁同步电机新型速度控制器设计[J]. 电工技术学报, 2018, 33(13): 2923-2934. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201813003.htm

    ZHANG Haiyang, XU Haiping, FANG Chen, et al. Design of a novel speed controller for direct-drive permanent magnet synchronous motor based on load torque observer[J]. Transaction of China Electrotechnical Society, 2018, 33(13): 2923-2934. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201813003.htm
    [16] 刘旭东, 李珂, 孙静, 等. 基于广义预测控制和扩展状态观测器的永磁同步电机控制[J]. 控制理论与应用, 2015, 32(12): 1613-1619. doi:  10.7641/CTA.2015.50144

    LIU Xudong, LI Ke, SUN Jing, et al. Generalized predictive control based on extended state observer for permanent magnet synchronous motor system[J]. Control Theory & Applications, 2015, 32(12): 1613-1619. doi:  10.7641/CTA.2015.50144
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  41
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-21
  • 修回日期:  2021-01-06
  • 刊出日期:  2021-02-20

目录

    /

    返回文章
    返回