留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于目标增强和视觉跟踪的红外运动点目标半自动标注算法

何敏 回丙伟 易梦妮 胡卫东

何敏, 回丙伟, 易梦妮, 胡卫东. 基于目标增强和视觉跟踪的红外运动点目标半自动标注算法[J]. 红外技术, 2022, 44(10): 1073-1081.
引用本文: 何敏, 回丙伟, 易梦妮, 胡卫东. 基于目标增强和视觉跟踪的红外运动点目标半自动标注算法[J]. 红外技术, 2022, 44(10): 1073-1081.
HE Min, HUI Bingwei, YI Mengni, HU Weidong. Infrared Moving-point Target Semi-Automatic Labeling Algorithm Based on Target Enhancement and Visual Tracking[J]. Infrared Technology , 2022, 44(10): 1073-1081.
Citation: HE Min, HUI Bingwei, YI Mengni, HU Weidong. Infrared Moving-point Target Semi-Automatic Labeling Algorithm Based on Target Enhancement and Visual Tracking[J]. Infrared Technology , 2022, 44(10): 1073-1081.

基于目标增强和视觉跟踪的红外运动点目标半自动标注算法

基金项目: ATR重点实验室基金“面向目标检测跟踪识别应用的多源数据集构建”项目
详细信息
    作者简介:

    何敏(1997-),女,湖南邵阳人,硕士,主要研究方向为红外目标检测。E-mail:douyc2021@163.com

    通讯作者:

    回丙伟(1985-),男,河北衡水人,博士,讲师,主要研究方向为目标识别数据样本工程。E-mail:huibingwei07@nudt.edu.cn

  • 中图分类号: TP391

Infrared Moving-point Target Semi-Automatic Labeling Algorithm Based on Target Enhancement and Visual Tracking

  • 摘要: 本文针对红外视频数据标注效率低、标注质量差等问题,提出了一种基于目标增强和视觉跟踪的红外序列图像中运动点目标半自动标注方法。首先对一段连续时间内的红外序列图像进行配准和背景对消以增强目标特征;然后使用视觉跟踪算法对增强后的特征进行高效自动定位;最后通过相位谱重构得到单帧图像的目标显著图,进而确定目标的准确坐标;在自动标注过程中,利用相邻帧标注结果的差异性选择关键帧,可以让标注人员快速定位可能发生错误的图像帧并对其进行手动标注。实验结果表明该算法可以显著降低标注人员的参与度,有效解决数据标注作业中周期长、质量难以保证的问题。
  • 图  1  半自动标注流程

    Figure  1.  Semi-automatic annotation flow chart

    图  2  序列图像配准

    Figure  2.  Sequential image registration

    图  3  增强效果对比:(a) 原图;(b) 增强图

    Figure  3.  Contrast between original image and target enhanced image: (a) Original image; (b) Target enhanced image

    图  4  红外点目标的精确定位

    Figure  4.  Precise positioning of infrared point targets

    图  5  典型错误分析:(a)(b)(c)目标运动不连续;(d)(e)(f)强背景噪声干扰

    Figure  5.  Typical error analysis: (a)(b)(c)Discontinuous motion of target; (d)(e)(f) Strong background noise

    图  6  不同场景下的目标增强算法:(a)(d)(g)(j)原图;(b)(e)(h)(k)原图的三维灰度图;(c)(f)(i)(l)增强图的三维灰度图

    Figure  6.  Target enhancement algorithm in different scenarios: (a)(d)(g)(j) original images; (b)(e)(h)(k)3D grayscale image of the original images; (c)(f)(i)(l) 3D grayscale image of target enhanced images

    图  7  跟踪结果对比

    Figure  7.  Comparison of tracking results

    图  8  标注精度与误差对比

    Figure  8.  Annotation accuracy and error comparison

    表  1  数据集的基本信息

    Table  1.   General information of dataset

    Data segment Number of frames Average signal-to-noise ratio Scenario description
    Data5 3000 5.45 Remote detection
    Data6 399 5.11 Target from near to far
    Data8 399 6.07 Target from near to far
    Data11 745 2.88 Target from near to far
    Data12 1500 5.20 Target midway maneuver
    Data13 763 1.98 Target from far to near, dim target
    Data15 751 3.42 Target midway maneuver, dim target
    Data17 500 3.32 Target midway maneuver
    Data19 1000 3.84 Target midway maneuver
    Data21 500 0.42 Remote detection
    Data22 500 2.20 Target from near to far
    下载: 导出CSV

    表  2  给出首帧标注信息的标注结果

    Table  2.   Annotation results with initialization information

    Data segment Data5 Data6 Data8 Data11 Data12 Data13 Data15 Data17 Data19 Data21 Data22
    NE 3000 399 399 745 1500 763 751 500 1000 500 500
    NMA 1 1 1 1 1 1 1 1 1 1 1
    Accuracy 98.3% 97.8% 97.4% 97.3% 98.2% 94.5% 92.3% 99.2% 99% 97.4% 100%
    下载: 导出CSV

    表  3  半自动标注结果

    Table  3.   Semi-automatic annotation results

    Data segment Data5 Data6 Data8 Data11 Data12 Data13 Data15 Data17 Data19 Data21 Data22
    NE 48 8 11 20 27 42 56 4 10 13 0
    NK 64 14 11 17 37 37 78 10 10 13 2
    NCK 39 5 8 7 19 24 51 2 6 8 0
    Accuracy 99.6% 99.2% 99.2% 98.2% 99.5% 97.6% 99.3% 99.6% 99.6% 99% 100%
    下载: 导出CSV
  • [1] Yuen J, Russell B, Liu C, et al. Labelme video: building a video database with human annotations[C]// 12th International Conference on Computer Vision(ICCV), IEEE, 2009: 1451-1458.
    [2] Lee J H, Lee K S, Jo G S. Representation method of the moving object trajectories by interpolation with dynamic sampling[C]//2013 International Conference on Information Science and Applications (ICISA), IEEE, 2013: 1-4.
    [3] Gil-Jiménez P, Gómez-Moreno H, López-Sastre R, et al. Geometric bounding box interpolation: an alternative for efficient video annotation[J]. EURASIP Journal on Image and Video Processing, 2016, 2016(1): 1-13. doi:  10.1186/s13640-015-0097-y
    [4] Vondrick C, Patterson D, Ramanan D. Efficiently scaling up crowdsourced video annotation[J]. International Journal of Computer Vision, 2013, 101(1): 184-204. doi:  10.1007/s11263-012-0564-1
    [5] Vondrick C, Ramanan D. Video annotation and tracking with active learning[J]. Advances in Neural Information Processing Systems, 2011, 24: 28-36.
    [6] Buchanan A, Fitzgibbon A. Interactive feature tracking using K-D trees and dynamic programming[C]// IEEE Conference on Computer Vision & Pattern Recognition (CVPR), IEEE, 2006: 626-633.
    [7] Agarwala A, Hertzmann A, Salesin D H, et al. Key frame-based tracking for rotoscoping and animation[J]. ACM Transactions on Graphics, 2004, 23(3): 584-591. doi:  10.1145/1015706.1015764
    [8] Biresaw T A, Nawaz T, Ferryman J, et al. Vitbat: video tracking and behavior annotation tool[C]//13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), IEEE, 2016: 295-301.
    [9] Bakliwal P, Hegde G M, Jawahar C V. Collaborative Contributions for Better Annotations[C]//The International Conference on Computer Vision Theory and Applications(VISAPP), Scite Press, 2017: 353-360.
    [10] CHEN B, LING H, ZENG X, et al. Scribblebox: interactive annotation framework for video object segmentation[C]//European Conference on Computer Vision (ECCV), Berlin Springer, 2020: 293-310.
    [11] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi:  10.1023/B:VISI.0000029664.99615.94
    [12] Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(3): 583-596.
    [13] WANG M, LIU Y, HUANG Z. Large margin object tracking with circulant feature maps[C]//The IEEE Conference on Computer Vision and Pattern Recognition(CVPR), New York: IEEE, 2017: 4021-4029.
    [14] 回丙伟, 宋志勇, 范红旗, 等. 地/空背景下红外图像弱小飞机目标检测跟踪数据集[J]. 中国科学数据, 2020, 5(3): 286-297. https://www.cnki.com.cn/Article/CJFDTOTAL-KXGZ202003030.htm

    HUI Bingwei, SONG Zhiyong, FAN Hongqi, et al. A dataset for infrared detection and tracking of dim-small aircraft targets under ground/air background[J]. China Sci. Data, 2020, 5(3): 286-297. https://www.cnki.com.cn/Article/CJFDTOTAL-KXGZ202003030.htm
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  35
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-11
  • 修回日期:  2021-12-08
  • 刊出日期:  2022-10-20

目录

    /

    返回文章
    返回