留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于图像处理的红外微扫描器件测量与校准的方法

王贵全 徐志文 段永进 施浩坤 蒋旭珂 李彦生 张雨璇 张劼

王贵全, 徐志文, 段永进, 施浩坤, 蒋旭珂, 李彦生, 张雨璇, 张劼. 一种基于图像处理的红外微扫描器件测量与校准的方法[J]. 红外技术, 2022, 44(9): 964-971.
引用本文: 王贵全, 徐志文, 段永进, 施浩坤, 蒋旭珂, 李彦生, 张雨璇, 张劼. 一种基于图像处理的红外微扫描器件测量与校准的方法[J]. 红外技术, 2022, 44(9): 964-971.
WANG Guiquan, XU Zhiwen, DUAN Yongjin, SHI Haokun, JIANG Xuke, LI Yansheng, ZHANG Yuxuan, ZHANG Jie. An Infrared Micro Scanner Measurement and Calibration Method Based on Image Processing[J]. Infrared Technology , 2022, 44(9): 964-971.
Citation: WANG Guiquan, XU Zhiwen, DUAN Yongjin, SHI Haokun, JIANG Xuke, LI Yansheng, ZHANG Yuxuan, ZHANG Jie. An Infrared Micro Scanner Measurement and Calibration Method Based on Image Processing[J]. Infrared Technology , 2022, 44(9): 964-971.

一种基于图像处理的红外微扫描器件测量与校准的方法

详细信息
    作者简介:

    王贵全(1981-),男,高级工程师,本科,主要从事红外整机系统检测与应用的相关研究。E-mail:119455225@qq.com

  • 中图分类号: TN219

An Infrared Micro Scanner Measurement and Calibration Method Based on Image Processing

  • 摘要: 在以红外焦平面为核心的红外成像系统中,微扫描器件可以有效提高整个系统的空间分辨率。针对微扫描器件的检测,本文提出了一种基于图像处理的测量与校准方法,并搭建了一套检测系统用于对微扫描器件进行检测与校准。以某型微扫描器件为测试对象,实验结果表明本文所提方法在测量精度、重复精度以及不确定度方面均达到了良好的效果,可以为微扫描器件的设计、生产提供基础支撑。
  • 图  1  微扫描器件检测装置

    Figure  1.  The micro scanner test instrument

    图  2  微扫描器件检测装置上位机软件界面

    Figure  2.  The user interface of the software for the test instrument

    图  3  测试装置原理

    Figure  3.  The schematic diagram of the micro scanner test instrument

    图  4  测试装置结构图

    Figure  4.  The structure of the micro scanner test instrument

    图  5  本文实验中的某型微扫描器件

    Figure  5.  The micro scanner in this paper

    图  6  靶标中心坐标获取流程图

    Figure  6.  The flow chart of the target center coordinate detection

    图  7  靶标中心坐标计算示例

    Figure  7.  The example of the center coordinate calculation of the target

    图  8  微扫描器件检测流程

    Figure  8.  The flow chart of the micro scanner testing

    图  9  微扫描器件校准流程

    Figure  9.  Flow chart of the micro scanner calibration

    图  10  校准后的轨迹与设计理论轨迹比较

    Figure  10.  The comparison between the trajectory after calibration and design trajectory

    表  1  数学模型参数p计算结果

    Table  1.   Calculation results of parameter p

    No. The X direction displacement (pixel) The Y direction displacement (pixel) The piezo positioner displacement/μm
    1 -0.002 -0.004 0
    2 0.621 0.639 5
    3 1.398 2.206 10
    4 2.875 3.327 15
    5 3.655 4.573 20
    6 5.111 5.878 25
    7 6.474 6.993 30
    8 7.533 8.109 35
    9 8.661 9.221 40
    10 9.81 10.321 45
    11 10.616 11.579 50
    12 12.042 12.871 55
    The parameter p of the X direction: 0.2260 pixel/μm,
    the parameter p of the Y direction: 0.2364 pixel/μm
    下载: 导出CSV

    表  2  某型微扫描器件的测试结果

    Table  2.   The test results of a micro scanner

    The design displacement No. X direction displacement test Y direction displacement test
    Real value Difference Real value Difference
    12.5 μm 1 12.573 0.073 12.089 -0.411
    2 12.303 -0.197 12.221 -0.279
    3 12.567 0.067 12.121 -0.379
    4 12.485 -0.015 12.231 -0.269
    5 12.506 0.006 12.075 -0.425
    6 12.504 0.004 12.053 -0.447
    7 12.576 0.076 12.231 -0.269
    8 12.208 -0.292 12.221 -0.279
    9 12.507 0.007 12.113 -0.387
    10 12.510 0.01 12.113 -0.387
    11 12.450 -0.05 12.072 -0.428
    12 12.372 -0.128 12.157 -0.343
    13 12.451 -0.049 12.174 -0.326
    14 12.455 -0.045 12.178 -0.322
    15 12.448 -0.052 12.173 -0.327
    16 12.498 -0.002 12.149 -0.351
    17 12.486 -0.014 12.083 -0.417
    18 12.366 -0.134 12.078 -0.422
    19 12.454 -0.046 12.158 -0.342
    20 12.457 -0.043 12.133 -0.367
    Mean 12.4588 -0.0412 12.1412 -0.3589
    下载: 导出CSV

    表  3  本文实验不确定度汇总

    Table  3.   The summary of the test uncertainty in this paper

    Uncertainty component Ui Uncertainty source Uncertainty Sensitivity coefficient ci $ \left| {{c_i}} \right| \cdot {U_i} $
    U(m) of the X direction The repeat test of the X direction 0.02014 μm c1=4.425 0.08912 μm
    U(m) of the Y direction The repeat test of the Y direction 0.01278 μm c1=4.230 0.05406 μm
    U(m1) of the X direction The error of the piezo positioner at the X direction -0.0041 μm c2=2.791 -0.01144 μm
    U(m1) of the Y direction The error of the piezo positioner at the Y direction -0.0045 μm c2=2.699 -0.01215 μm
    The synthetic uncertainty of the X direction: 0.08985 μm; The expand uncertainty of the X direction: 0.17970 μm
    The synthetic uncertainty of the Y direction:0.05541 μm; The expand uncertainty of the Y direction: 0.11082 μm
    下载: 导出CSV
  • [1] Bagavathiappan S, Lahiri B B, Saravanan T, et al. Infrared thermography for condition monitoring–a review[J]. Infrared Physics & Technology, 2013, 60: 35-55.
    [2] Kogure S, Inoue K, Ohmori T, et al. Infrared imaging of an A549 cultured cell by a vibrational sum-frequency generation detected infrared super resolution microscope[J]. Optics Express, 2010, 18(13): 13402-13406. doi:  10.1364/OE.18.013402
    [3] Lanfrey D B, Trinolet P, Pistone F, et al. New IR detectors with small pixel pitch and high operating temperature[C]//Proc. of SPIE, 2010, 7854: 78540M.
    [4] 吕侃, 王世勇. 超分辨率技术在红外微扫描中的应用[J]. 电子设计工程, 2011, 19(13): 166-169. doi:  10.3969/j.issn.1674-6236.2011.13.050

    LV Kan, WANG Shiyong. Application of super-resolution techniques in infrared micro-scanning[J]. Electronic Design Engineering, 2011, 19(13): 166-169. doi:  10.3969/j.issn.1674-6236.2011.13.050
    [5] 张良, 仇振安, 杨小儒, 等. 红外系统微扫描技术研究[J]. 激光与光电子学进展, 2012, 49(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201204024.htm

    ZHANG Liang, QIU Zhen'an, YANG Xiaoru, et al. Research of infrared micro-scanning technology[J]. Laser & Optoelectronics Progress, 2012, 49(4): 042302 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201204024.htm
    [6] 吴新社, 邓芳轶, 陈敏, 等. 旋转式红外微扫描器研制[J]. 红外与毫米波学报, 2011, 30(3): 263-267. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201103017.htm

    WU Xinshe, DENG Fangyi, CHEN Min, et al. Development of rotary infrared micro-scanner[J]. Journal of Infrared and Millimeter Waves, 2011, 30(3): 263-267. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201103017.htm
    [7] 王学伟, 李珂, 王世立. 红外成像系统微扫描成像重建算法研究[J]. 光电工程, 2012, 39(12): 122-126. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201212023.htm

    WANG Xuewei, LI Ke, WANG Shili. Microscanning reconstruction algorithm for IR imaging system[J]. Opto-Electronic Engineering, 2012, 39(12): 122-126. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201212023.htm
    [8] 代少升, 张德州, 崔俊杰, 等. 基于微扫描的红外超分辨率成像系统的设计[J]. 半导体光电, 2017, 38(1): 103-106, 112. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201701026.htm

    DAI Shaosheng, ZHANG Dezhou, CUI Junjie, et al. Design of infrared super-resolution imaging system based on micro-scanning[J]. Semiconductor Optoelectronics, 2017, 38(1): 103-106, 112. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201701026.htm
    [9] 黄燕, 沈飞, 黄整章, 等. 压电式高精度位移微扫描控制系统设计[J]. 光学精密工程, 2016, 24(10s): 454-460.

    HUANG Yan, SHEN Fei, HUANG Zhengzhang, et al. Micro-scanning control system design for piezoelectric high-precision displacement[J]. Editorial Office of Optics and Precision Engineering, 2016, 24(10s): 454-460.
    [10] 王忆锋, 侯辉, 冯雪艳. 红外焦平面器件微扫描技术的发展[J]. 红外技术, 2013, 35(12): 751-758. http://hwjs.nvir.cn/article/id/hwjs201312002

    WANG Yifeng, HOU Hui, FENG Xueyan, Development of microscan techniques in infrared focal plane array[J]. Infrared Technology, 2013, 35(12): 751-758. http://hwjs.nvir.cn/article/id/hwjs201312002
    [11] 王林波, 王延杰, 邸男, 等. 基于几何特征的圆形标志点亚像素中心定位[J]. 液晶与显示, 2014, 29(6): 1003-1009. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201406024.htm

    WANG Linbo, WANG Yanjie, DI Nan, et al. Subpixel location of circle target center based on geometric features[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(6): 1003-1009. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201406024.htm
    [12] 梁智滨, 吴鹏飞, 李灵巧, 等. 基于改进Zernike矩和均值漂移的插针位置检测方法[J]. 桂林电子科技大学学报, 2021, 41(4): 305-311. https://www.cnki.com.cn/Article/CJFDTOTAL-GLDZ202104008.htm

    LIANG Zhibin, WU Pengfei, LI Lingqiao, et al. Pin position detection based on improved Zernike moment and mean shift[J]. Journal of Guilin University of Electronic Technology, 2021, 41(4): 305-311. https://www.cnki.com.cn/Article/CJFDTOTAL-GLDZ202104008.htm
    [13] 田光宝, 王见, 王博文. 单目相机非合作目标提取及位姿检测[J]. 红外与激光工程, 2021, 50(12): 20210166. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202112050.htm

    TIAN Guangbao, WANG Jian, WANG Bowen. Monocular camera non-cooperative target extraction and pose detection[J]. Infrared and Laser Engineering, 2021, 50(12): 20210166. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202112050.htm
    [14] Ghosal S, Mecrotra R. Orthogonal moment operator for subpixel edge detection[J]. Pattern Recognition, 1993, 26(2): 295-306.
    [15] 卢达, 白静芬, 林繁涛, 等. 基于映射常数的动态量值不确定度评定方法[J]. 电测与仪表, 2022, 59(6): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ202206008.htm

    LU Da, BAI Jingfen, LIN Fantao, et al. Evaluation of uncertainty for dynamic values based on mapping constants[J]. Electrical Measurement & Instrumentation, 2022, 59(6): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ202206008.htm
    [16] 中国国家标准化管理委员会. 测量不确定度评定和表示: GB/T 27418-2017[S]. 北京: 中国标准出版社, 2018.

    Standard Administration. Guide to Evaluation and Expression of Uncertainty in Measurement: GB/T 27418-2017[S]. Beijing: Standards Press of China, 2018.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  43
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 修回日期:  2021-12-16
  • 刊出日期:  2022-09-20

目录

    /

    返回文章
    返回