留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PbS胶体量子点稳定性研究进展

赵逸群 吴桢芬 杨晓杰 邓大政 刘雪娥 周惠群

赵逸群, 吴桢芬, 杨晓杰, 邓大政, 刘雪娥, 周惠群. PbS胶体量子点稳定性研究进展[J]. 红外技术, 2022, 44(3): 205-211.
引用本文: 赵逸群, 吴桢芬, 杨晓杰, 邓大政, 刘雪娥, 周惠群. PbS胶体量子点稳定性研究进展[J]. 红外技术, 2022, 44(3): 205-211.
ZHAO Yiqun, WU Zhenfen, YANG Xiaojie, DENG Dazheng, LIU Xue’e, ZHOU Huiqun. Research Progress on Stability of PbS Colloidal Quantum Dots[J]. Infrared Technology , 2022, 44(3): 205-211.
Citation: ZHAO Yiqun, WU Zhenfen, YANG Xiaojie, DENG Dazheng, LIU Xue’e, ZHOU Huiqun. Research Progress on Stability of PbS Colloidal Quantum Dots[J]. Infrared Technology , 2022, 44(3): 205-211.

PbS胶体量子点稳定性研究进展

基金项目: 

云南省教育厅科学研究基金项目 2018JS550

昆明理工大学分析测试基金 2020T20060036

详细信息
    作者简介:

    赵逸群(1980-),男,博士,研究方向是光电材料

    通讯作者:

    吴桢芬(1981-),女,副教授,硕士生导师,主要从事化学与电路研究。E-mail:bitzhaoyq@163.com

  • 中图分类号: O434.3

Research Progress on Stability of PbS Colloidal Quantum Dots

  • 摘要: PbS胶体量子点由于其制备简单、成本低廉,在近红外波段通过调节尺寸就能改变带隙,在太阳能电池、红外探测、LED、生物成像等多个领域均有广泛的应用,但稳定性限制了其大规模推广。本文总结了影响PbS胶体量子点稳定性的机理,从制备、结构、保存、使用等多个环节探讨提高其稳定性的具体措施。提出进一步改进PbS胶体量子点稳定性的具体方法和原理,对其应用和发展具有一定的参考价值。
  • 图  1  PbS胶体量子点的应用:(a) 太阳能电池领域[4];(b) 红外探测器领域[11];(c) 含PbS胶体量子点的LED结构[14];(d) 另一种基于PbS胶体量子点的LED结构[17];注射了量子点的小白鼠的(e)可见光成像;(f)红外成像和(g)融合成像[20]

    Figure  1.  The Application of PbS colloidal QDs: (a) Solar cell field[4]; (b) Infrared detection field[11]; (c) The LED structure based PbS colloidal QDs[11]; (d) Another LED structure based PbS colloidal QDs[14]; The (e) optical, (f) fluorescence, and (g) merged images of the mouse after injection with the QD solution[20]

    图  2  PbS胶体量子点:(a) 热注入法生产PbS胶体量子点;(b) PbS/CdS核壳结构;(c) PbS/CdS/ZnS核壳结构;(d) PbS胶体量子点中氧诱导的间隙态[35]

    Figure  2.  PbS colloidal QDs: (a) Producing PbS colloidal QDs by heat injection; (b) PbS/CdS core/shell structure; (c) PbS/CdS/ZnS core/shell structure; (d) In-gap states[35] induced by O2 in PbS colloidal QDs

    图  3  PbS胶体量子点的尺寸与形状:(a) PbS胶体量子点尺寸与形状的关系[30];(b) 八面体结构的PbS胶体量子点;(c) 八面体表面原子展开图;(c) 立方八面体结构的PbS胶体量子点;(d) 立方八面体的表面原子展开图

    Figure  3.  Size and shape of PbS colloidal QDs: (a) Diagram of shape versus size about PbS colloidal QDs[30]; (b) PbS colloidal QDs with octahedral structure; (c) Expansion of octahedral surface atomic; (d) PbS colloidal QDs with cuboctahedral structure; (e) Expansion of cuboctahedral surface atomic

    表  1  增强PbS胶体量子点稳定性的技巧

    Table  1.   Skills to enhance stability of PbS colloidal QDs

    Skills Descriptions Characteristics References
    a) Improving the preparation condition The amount of O2 and H2O in the preparation environment is reduced via selecting appropriate raw materials and adjusting the preparation atmosphere. The premise of successfully preparing PbS colloidal QDs [38, 45-47]
    b) Controling particle size The ideal crystal plane appears on the outer surface of the QDs via controlling the reaction conditions and the metrological ratio of Pb and S. Fixed absorption band, and only used in applications that are insensitive to the bands [30, 31]
    c) Core/shell structure A more stable shell surrounds the PbS colloidal QDs via cation exchanging. The complicated preparation process
    Reducing the toxicity of PbS and improving solubility in aqueous solution
    Mostly used in biological field
    [38, 40, 41]
    d) Surface passivation Ligand exchanging
    Halogen ligands are often used in the range of inorganic ligands.
    Reducing hydroxyl groups on the surface of QDs
    No photoconductance gain
    Commonly used in photovoltaic devices
    [4, 48]
    e) Improving the operating environment Encapsulation. Using in fields of small-sized photodetectors and LED [11]
    下载: 导出CSV
  • [1] ZHAO Y, YANG S, ZHAO J, et al. PbS quantum dots based organic-inorganic hybrid infrared detecting and display devices[J]. Mater. Lett. , 2017, 196: 176-178. doi:  10.1016/j.matlet.2017.03.009
    [2] HOU B, CHO Y, Kim B S, et al. Highly monodispersed PbS quantum dots for outstanding cascaded-junction solar cells[J]. ACS Energy Lett. , 2016, 1(4): 834-839. doi:  10.1021/acsenergylett.6b00294
    [3] ZHANG B, LI G, ZHANG J, et al. Synthesis and characterization of PbS nanocrystals in water/C12E9/cyclohexane microemulsions[J]. Nanotechnology, 2003, 14(4): 443-446. doi:  10.1088/0957-4484/14/4/307
    [4] YANG X, YANG J, KHAN J, et al. Hydroiodic acid additive enhanced the performance and stability of PbS-QDs solar cells via suppressing hydroxyl ligand[J]. Nanomicro Lett. , 2020, 12(1): 37.
    [5] CHUANG C H, Brown P R, Bulovic V, et al. Improved performance and stability in quantum dot solar cells through band alignment engineering[J]. Nat. Mater. , 2014, 13(8): 796-801. doi:  10.1038/nmat3984
    [6] Shrestha A, Batmunkh M, Tricoli A, et al. Near-infrared active lead chalcogenide quantum dots: preparation, post-synthesis lig and exchange, and applications in solar cells[J]. Angew. Chem. Int. Ed. , 2019, 58(16): 5202-5224. doi:  10.1002/anie.201804053
    [7] Tavakoli Dastjerdi H, Tavakoli R, Yadav P, et al. Oxygen plasma-induced p-type doping improves performance and stability of PbS quantum dot solar cells[J]. ACS Appl. Mater. Interfaces, 2019, 11(29): 26047-26052. doi:  10.1021/acsami.9b08466
    [8] LIN Q, YUN H J, LIU W, et al. Phase-transfer ligand exchange of lead chalcogenide quantum dots for direct deposition of thick, highly conductive films[J]. J. Am. Chem. Soc. , 2017, 139(19): 6644-6653. doi:  10.1021/jacs.7b01327
    [9] De Iacovo A, Venettacci C, Colace L, et al. PbS colloidal quantum dot photodetectors operating in the near infrared[J]. Sci. Rep. , 2016, 6: 37913. doi:  10.1038/srep37913
    [10] Venettacci C, Martin-Garcia B, Prato M, et al. Increasing responsivity and air stability of PbS colloidal quantum dot photoconductors with iodine surface ligands[J]. Nanotechnology, 2019, 30(40): 405204. doi:  10.1088/1361-6528/ab2f4b
    [11] Georgitzikis E, Malinowski P E, Li Y, et al. Integration of PbS quantum dot photodiodes on silicon for NIR imaging[J]. IEEE Sens. J. , 2020, 20(13): 6841-6848. doi:  10.1109/JSEN.2019.2933741
    [12] CHEN W, TANG H, CHEN Y, et al. Spray-deposited PbS colloidal quantum dot solid for near-infrared photodetectors[J]. Nano Energy, 2020, 78: 105254. doi:  10.1016/j.nanoen.2020.105254
    [13] Ahn S, CHUNG H, CHEN W, et al. Optoelectronic response of hybrid PbS-QD/graphene photodetectors[J]. J. Phys. Chem. B, 2019, 151(23): 234705. doi:  10.1063/1.5132562
    [14] SUN L, Choi J J, Stachnik D, et al. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control[J]. Nature Nanotechnology, 2012, 7(6): 369-373. doi:  10.1038/nnano.2012.63
    [15] Shirasaki Y, Supran G J, Bawendi M G, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature Photonics, 2013, 7(1): 13-23. doi:  10.1038/nphoton.2012.328
    [16] Zaini M S, Liew J Y C, Alang Ahmad S A, et al. Photoluminescence investigation of carrier localization in colloidal PbS and PbS/MnS quantum dots[J]. ACS Omega, 2020, 5(48): 30956-30962. doi:  10.1021/acsomega.0c03768
    [17] Pradhan S, Di Stasio F, Bi Y, et al. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level[J]. Nat Nanotechnol, 2019, 14(1): 72-79. doi:  10.1038/s41565-018-0312-y
    [18] LIU H, ZHONG H, ZHENG F, et al. Near-infrared lead chalcogenide quantum dots: Synthesis and applications in light emitting diodes[J]. Chinese Phys. B, 2019, 28(12): 128504. doi:  10.1088/1674-1056/ab50fa
    [19] Imamura Y, Yamada S, Tsuboi S, et al. Near-infrared emitting PbS quantum dots for in vivo fluorescence imaging of the thrombotic state in septic mouse brain[J]. Molecules, 2016, 21(8): 1080. doi:  10.3390/molecules21081080
    [20] Benayas A, Ren F, Carrasco E, et al. PbS/CdS/ZnS quantum dots: A multifunctional platform for in vivo near-infrared low-dose fluorescence imaging[J]. Adv. Funct. Mater. , 2015, 25(42): 6650-6659. doi:  10.1002/adfm.201502632
    [21] Raissi M, Sajjad M T, Pellegrin Y, et al. Size dependence of efficiency of PbS quantum dots in NiO-based dye sensitised solar cells and mechanistic charge transfer investigation[J]. Nanoscale, 2017, 9(40): 15566-15575. doi:  10.1039/C7NR03698A
    [22] Cademartiri L, Bertolotti J, Sapienza R, et al. Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals[J]. J Phys. Chem. B, 2006, 110(2): 671-673. doi:  10.1021/jp0563585
    [23] ZHOU S, LIU Z, WANG Y, et al. Towards scalable synthesis of high-quality PbS colloidal quantum dots for photovoltaic applications[J]. J. Mater. Chem. C, 2019, 7(6): 1575-1583. doi:  10.1039/C8TC05353G
    [24] Moreels I, Lambert K, Smeets D, et al. Size-dependent optical properties of colloidal PbS quantum dots[J]. ACS Nano, 2009, 3(10): 3023-3030. doi:  10.1021/nn900863a
    [25] ZHANG J, Crisp R W, GAO J, et al. Synthetic conditions for high-accuracy size control of PbS quantum dots[J]. J. Phys. Chem. Lett. , 2015, 6(10): 1830-1833. doi:  10.1021/acs.jpclett.5b00689
    [26] Čapek R K, Lambert K, Dorfs D, et al. Synthesis of extremely small CdSe and bright blue luminescent CdSe/ZnS nanoparticles by a prefocused hot-injection approach[J]. Chem. Mater. , 2009, 21(8): 1743-1749. doi:  10.1021/cm900248b
    [27] KUO Y C, WANG Q, Ruengruglikit C, et al. Antibody-conjugated CdTe quantum dots for escherichia coli detection[J]. J. Phys. Chem. C, 2008, 112(13): 4818-4824. doi:  10.1021/jp076209h
    [28] MAO X, YU J, XU J, et al. Enhanced performance of all solid-state quantum dot-sensitized solar cells via synchronous deposition of PbS and CdS quantum dots[J]. New J. Chem. , 2020, 44(2): 505-512. doi:  10.1039/C9NJ05344A
    [29] Skurlov I D, Korzhenevskii I G, Mudrak A S, et al. Optical properties, morphology, and stability of iodide-passivated lead sulfide quantum dots[J]. Materials, 2019, 12(19): 3219. doi:  10.3390/ma12193219
    [30] Beygi H, Sajjadi S A, Babakhani A, et al. Surface chemistry of as-synthesized and air-oxidized PbS quantum dots[J]. Appl. Surf. Sci. , 2018, 457: 1-10. doi:  10.1016/j.apsusc.2018.06.152
    [31] Choi H, Ko J H, Kim Y H, et al. Steric-hindrance-driven shape transition in PbS quantum dots: understanding size-dependent stability[J]. J. Am. Chem. Soc., 2013, 135(14): 5278-5281. doi:  10.1021/ja400948t
    [32] Kagan C R, Murray C B. Charge transport in strongly coupled quantum dot solids[J]. Nat Nanotechnol, 2015, 10(12): 1013-1026. doi:  10.1038/nnano.2015.247
    [33] Kim S, Noh J, Choi H, et al. One-step deposition of photovoltaic layers using iodide terminated PbS quantum dots[J]. J. Phys. Chem. Lett. , 2014, 5(22): 4002-4007. doi:  10.1021/jz502092x
    [34] Shuklov I A, Toknova V F, Lizunova A A, et al. Controlled aging of PbS colloidal quantum dots under mild conditions[J]. Mater. Today Chem. , 2020, 18: 100357. doi:  10.1016/j.mtchem.2020.100357
    [35] ZHANG Y, Zherebetskyy D, Bronstein N D, et al. Molecular oxygen induced in-gap states in PbS quantum dots[J]. ACS Nano, 2015, 9(10): 10445-10452. doi:  10.1021/acsnano.5b04677
    [36] Ushakova E V, Cherevkov S A, Litvin A P, et al. Ligand-dependent morphology and optical properties of lead sulfide quantum dot superlattices[J]. J. Phys. Chem. C, 2016, 120(43): 25061-25067. doi:  10.1021/acs.jpcc.6b07734
    [37] Weidman M C, Beck M E, Hoffman R S, et al. Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control[J]. ACS Nano, 2014, 8(6): 6363-6371. doi:  10.1021/nn5018654
    [38] ZHAO H, LIANG H, Vidal F, et al. Size dependence of temperature-related optical properties of PbS and PbS/CdS core/shell quantum dots[J]. J. Phys. Chem. C, 2014, 118(35): 20585-20593. doi:  10.1021/jp503617h
    [39] LIU J, ZHANG H, Navarro-Pardo F, et al. Hybrid surface passivation of PbS/CdS quantum dots for efficient photoelectrochemical hydrogen generation[J]. Appl. Surf. Sci. , 2020, 530: 147252. doi:  10.1016/j.apsusc.2020.147252
    [40] Tsukasaki Y, Morimatsu M, Nishimura G, et al. Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum dots for in vivo fluorescence imaging in the second near-infrared window[J]. RSC Adv. , 2014, 4(77): 41164-41171. doi:  10.1039/C4RA06098A
    [41] Nasilowski M, Nienhaus L, Bertram S N, et al. Colloidal atomic layer deposition growth of PbS/CdS core/shell quantum dots[J]. Chem. Comm. , 2017, 53(5): 869-872.
    [42] Maulu A, Navarro-Arenas J, Rodriguez-Canto P J, et al. Charge transport in trap-sensitized infrared PbS quantum-dot-based photoconductors: pros and cons[J]. Nanomaterials, 2018, 8(9): 677. doi:  10.3390/nano8090677
    [43] CAO J, ZHU H, DENG D, et al. In vivo NIR imaging with PbS quantum dots entrapped in biodegradable micelles[J]. J. Biomed. Mater. Res. A, 2012, 100(4): 958-968.
    [44] DENG D, CAO J, XIA J, et al. Two-phase approach to high-quality, oil-soluble, near-infrared-emitting PbS quantum dots by wsing various water-soluble anion precursors[J]. Eur. J. Inorg. Chem. , 2011, 2011(15): 2422-2432. doi:  10.1002/ejic.201100012
    [45] Abel K A, Shan J, Boyer J-C, et al. Highly photoluminescent PbS nanocrystals: The beneficial effect of trioctylphosphine[J]. Chem. Mater. , 2008, 20(12): 3794-3796. doi:  10.1021/cm702564a
    [46] Moreels I, Justo Y, De Geyter B, et al. Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study[J]. ACS Nano, 2011, 5(3): 2004-2012. doi:  10.1021/nn103050w
    [47] Steckel J S, Yen B K, Oertel D C, et al. On the mechanism of lead chalcogenide nanocrystal formation[J]. J. Am. Chem. Soc. , 2006, 128(40): 13032-13033. doi:  10.1021/ja062626g
    [48] CAO Y, Stavrinadis A, Lasanta T, et al. The role of surface passivation for efficient and photostable PbS quantum dot solar cells[J]. Nature Energy, 2016, 1(4): 16035. doi:  10.1038/nenergy.2016.35
    [49] Beygi H, Sajjadi S A, Babakhani A, et al. Air exposure oxidation and photooxidation of solution-phase treated PbS quantum dot thin films and solar cells[J]. Sol. Energ. Mat. Sol. C. , 2019, 203: 110163. doi:  10.1016/j.solmat.2019.110163
    [50] Pichaandi J, van Veggel F C J M. Near-infrared emitting quantum dots: Recent progress on their synthesis and characterization[J]. Coord. Chem. Rev. , 2014, 263-264: 138-150. doi:  10.1016/j.ccr.2013.10.011
    [51] Boercker J E, Woodall D L, Cunningham P D, et al. Synthesis and characterization of PbS/ZnS core/shell nanocrystals[J]. Chem. Mater. , 2018, 30(12): 4112-4123. doi:  10.1021/acs.chemmater.8b01421
    [52] Speirs M J, Balazs D M, Fang H H, et al. Origin of the increased open circuit voltage in PbS–CdS core–shell quantum dot solar cells[J]. J. Mater. Chem. A, 2015, 3(4): 1450-1457. doi:  10.1039/C4TA04785K
    [53] WANG Z, HU Z, Kamarudin M A, et al. Enhancement of charge transport in quantum dots solar cells by N-butylamine-assisted sulfur-crosslinking of PbS quantum dots[J]. Sol. Energy, 2018, 174: 399-408. doi:  10.1016/j.solener.2018.09.026
    [54] Zherebetskyy D, Scheele M, Zhang Y, et al. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid[J]. Science, 2014, 344(6190): 1380-1384. doi:  10.1126/science.1252727
    [55] GU M, WANG Y, YANG F, et al. Stable PbS quantum dot ink for efficient solar cells by solution-phase ligand engineering[J]. J. Mater. Chem. A, 2019, 7(26): 15951-15959. doi:  10.1039/C9TA02393C
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  42
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-19
  • 修回日期:  2021-08-20
  • 刊出日期:  2022-03-20

目录

    /

    返回文章
    返回