留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

欧洲超二代像增强器技术的选择及进一步发展

李晓峰 何雁彬 徐传平 李金沙 张勤东

李晓峰, 何雁彬, 徐传平, 李金沙, 张勤东. 欧洲超二代像增强器技术的选择及进一步发展[J]. 红外技术, 2022, 44(12): 1249-1263.
引用本文: 李晓峰, 何雁彬, 徐传平, 李金沙, 张勤东. 欧洲超二代像增强器技术的选择及进一步发展[J]. 红外技术, 2022, 44(12): 1249-1263.
LI Xiaofeng, HE Yanbin, XU Chuanping, LI Jinsha, ZHANG Qindong. Choice of European Super Second Generation Image Intensifier Technology and its Further Development[J]. Infrared Technology , 2022, 44(12): 1249-1263.
Citation: LI Xiaofeng, HE Yanbin, XU Chuanping, LI Jinsha, ZHANG Qindong. Choice of European Super Second Generation Image Intensifier Technology and its Further Development[J]. Infrared Technology , 2022, 44(12): 1249-1263.

欧洲超二代像增强器技术的选择及进一步发展

基金项目: 

国家自然科学基金 11535014

详细信息
    作者简介:

    李晓峰(1963-),男,博士,正高级工程师,主要研究方向为微光夜视技术。E-mail: 984118295@qq.com

  • 中图分类号: TN223

Choice of European Super Second Generation Image Intensifier Technology and its Further Development

  • 摘要: 二代像增强器采用Na2KSb光电阴极,三代像增强器却采用GaAs光电阴极。由于GaAs光电阴极具有更高的阴极灵敏度,因此三代像增强器的性能远高于二代像增强器。在二代像增强器基础上发展的超二代像增强器,阴极灵敏度有了很大提高,因此性能也有很大提高,同时大大缩短了与三代像增强器的性能差距。超二代像增强器属于Na2KSb材料体系,生产成本低,与三代像增强器相比性价比较高,所以欧洲的像增强器产商选择了超二代像增强器技术的发展路线。超二代与三代像增强器技术并行发展了30多年,两者性能均有大幅提高。超二代与三代像增强器的性能差距主要体现在极低照度(<10-4 lx)条件下,而在其它照度条件下,性能基本相当。超二代像增强器的性能仍有提高的空间。增益方面,在微通道板的通道内壁上制作高二次电子发射系数的材料膜层可以提高增益;信噪比方面,采用光栅窗可提高阴极灵敏度,从而提高信噪比;分辨力方面,在微通道板输出端制作半导体膜层、采用高清荧光屏均可提高分辨力。阴极灵敏度是光电阴极的指标,不是像增强器的整体性能指标。阴极灵敏度对像增强器整体性能的影响体现在增益、信噪比以及等效背景照度指标中。无论是超二代还是三代像增强器,都区分不同的型号。不同型号的超二代或三代像增强器性能均不相同。超二代和三代像增强器的性能指标是在A光源条件下测量的,而A光源光谱分布与实际应用环境中的光谱分布并不等同,同时Na2KSb和GaAs光电阴极的光谱分布不相同,所以超二代和三代像增强器的信噪比、分辨力等性能指标不具备可比性。
  • 图  1  二代和三代像增强器

    Figure  1.  Gen Ⅱ and Gen Ⅲ image intensifier

    图  2  像增强器所施加的电压

    Figure  2.  Voltages brought to the image intensifier

    图  3  MCP结构示意图

    Figure  3.  Diagram of MCP structure

    图  4  Gen Ⅱ and Gen Ⅲ 像增强器光电阴极反射率

    Figure  4.  Photocathode reflection of Gen Ⅱ and Gen Ⅲ image intensifier

    图  5  光电阴极能带简图

    Figure  5.  Energy band at the surface of Na2KSb and GaAs

    图  6  GaAs和Na2KSb光电阴极光谱响应

    Figure  6.  Photocathode response of GaAs and Na2KSb

    图  7  超二代像增强器

    Figure  7.  Super Gen Ⅱ image intensifier

    图  8  MCP通道内ALD镀膜示意图

    Figure  8.  Filmed channel by ALD technology

    图  9  MCP通道内纳米金刚石膜层示意图

    Figure  9.  Channel with Nano diamond film by ultrasonic technology

    图  10  玻璃窗与光栅窗的阴极光谱响应

    Figure  10.  Spectral response of Na2KSb cathode on glass and grating window

    图  11  光栅窗提高光电阴极灵敏度的原理

    Figure  11.  Schematic diagram of sensitivity improvement on grating window

    1. Input light; 2. Glass window; 3. Grating; 4. Photocathode; 5. Output interface; 6. Diffracting light; 7. Reflection light

    图  12  输出电子轨迹示意图

    Figure  12.  Diagram for trajectory of output electron

    图  13  高分辨力荧光屏示意图

    Figure  13.  High resolution phosphor screen

    图  14  A光源与星光下的发射光谱分布

    Figure  14.  Emission spectrum of a illuminant and star illumination

    表  1  二代和三代像增强器的主要区别

    Table  1.   Major differences between Gen Ⅱ and Gen Ⅲ image intensifier

    Image intensifier GEN Ⅱ GEN Ⅲ Characteristic
    Input window Fiber-optic plate Glass Glass has higher transmission
    AR film - Si3N4 GaAs cathode has lower reflection
    Photocathode Na2KSb GaAs GaAs cathode has higher PR
    Cathode voltage 200 V > 400 V -
    Ion barrier - Al2O3 Ion barrier will decrease SNR
    Sealing technology Thermal sealing Cold sealing Thermal sealing is easier
    Vacuum < 10-5 Pa < 10-8 Pa The higher the vacuum, the more expensive the equipment
    下载: 导出CSV

    表  2  二代与三代像增强器的主要性能比较

    Table  2.   Major parameters of Gen Ⅱ and Gen Ⅲ image intensifier

    Image intensifier Gen Ⅱ Gen Ⅲ Unit
    PR >240 >1000 μA⋅lm-1
    SNR >12.7 >16.2 -
    RES >25 >36 lp⋅mm-1
    Gain >2400 >6400 cd⋅m-2⋅lx-1
    EBI <2.5×10-7 <2.5×10-7 lx
    MTTF 2000 - Hour
    Shock resistance >75 >75 g
    Manufacture DEP ITT -
    下载: 导出CSV

    表  3  二代与三代像增强器观察视距比较

    Table  3.   Recognized distance for Gen Ⅱ and Gen Ⅲ image intensifier

    Scene illumination/lx Gen Ⅱ Gen Ⅲ
    1×10-2 1 1.15
    1×10-3 1 1.42
    7×10-4 1 1.51
    下载: 导出CSV

    表  4  不同生产商三代像增强器的主要性能比较

    Table  4.   Major parameters of Gen Ⅲ image intensifier of different manufactures

    Parameters Image intensifier model & manufacturer Unit
    XX1520(by AEG) XX1530(by DEP) *( by LEP) ANVIS(by ITT)
    PR > 1000 > 1000 >1000 >1000 μA⋅lm-1
    SNR > 16.2 > 16.2 >15 >16.2 -
    RES > 36 > 36 >35 >36 lp⋅mm-1
    Gain > 6400 > 6400 >6400 >6400 cd⋅m-2⋅lx-1
    EBI < 2.5×10-7 < 2.5×10-7 < 2.5×10-7 <2.5×10-7 lx
    MTTF 7500 7500 7500 - Hour
    Shock resistance 75 75 75 >75 g
    Note:*without a model for sale
    下载: 导出CSV

    表  5  二代、超二代以及三代像增强器的主要区别

    Table  5.   Major differences between Gen Ⅱ, Super Gen Ⅱ and Gen Ⅲ image intensifier

    Image intensifier Gen Ⅱ Super Gen Ⅱ Gen Ⅲ
    Input window Fiber-optic plate Glass Glass
    AR film - - Si3N4
    Photocathode Na2KSb Na2KSb GaAs
    Cathode voltage 200 V 200 V >400 V
    Ion barrier - - Al2O3
    Sealing technology Thermal sealing Thermal sealing Cold sealing
    Vacuum <10-5 Pa <10-5 Pa <10-8 Pa
    下载: 导出CSV

    表  6  不同像增强器的主要性能比较

    Table  6.   Major parameters of different image intensifiers

    Image intensifier Super Gen Ⅱ Super Gen Ⅱ Gen Ⅲ Unit
    Model XX1700 XX1610 ANVIS -
    PR >500 >500 >1000 μA⋅lm-1
    SNR > 18.9 >15.5 >16.2 -
    RES >36 >36 >36 lp⋅mm-1
    Gain >12000 >6400 >6400 cd⋅m-2⋅lx-1
    EBI <2.5×10-7 <2.5×10-7 <2.5×10-7 lx
    MTTF 10000 7500 7500 Hour
    Shock resistance > 500 >500 >75 g
    Manufacturer DEP Philips ITT -
    下载: 导出CSV

    表  7  二代、超二代以及三代像增强器观察视距比较

    Table  7.   Recognized distance for Gen Ⅱ, Super Gen Ⅱ and Gen Ⅲ image intensifiers

    Scene illumination
    /lx
    Gen Ⅱ Super Gen Ⅱ Gen Ⅲ
    1×10-2 1 1.12 1.15
    1×10-3 1 1.35 1.42
    7×10-4 1 1.41 1.51
    下载: 导出CSV

    表  8  超二代与三代像增强生产成本分析

    Table  8.   Analysis on cost of Super Gen Ⅱ and Gen Ⅲ

    Super Gen Ⅱ Gen Ⅲ
    Equipment Low vacuum(< 10-5 Pa) Very high vacuum(< 10-8 Pa)
    Technique Short process chain, high efficiency and high yield Long process chain, low efficiency and low yield
    下载: 导出CSV

    表  9  像增强器性能参数比较

    Table  9.   Comparison between different image intensifier

    PR/μA⋅lm-1 SNR RES/lp⋅mm-1 Gain/cd⋅m-2⋅lx-1 EBI/lx
    1123# 872 25.7 64 16000 1.6×10-7
    1171# 765 26.2 64 16000 0.9×10-7
    下载: 导出CSV

    表  10  Omnibus计划的三代像增强器

    Table  10.   Parameters of Gen Ⅲ image intensifier in Omnibus procurements

    Omnibus Ⅲ Omnibus Ⅳ Omnibus Ⅴ Omnibus Ⅵ Unit
    PR 1350 1800 1800 2000 μA⋅lm-1
    RES 51 64 64 64 lp⋅mm-1
    SNR 19 21 21 25 -
    Gain 12500-22500 12500-22500 12500-22500 15000-22500 cd⋅m-2⋅lx-1
    Year 1990 1996 1999 2002 -
    下载: 导出CSV

    表  11  超二代像增强器性能指标

    Table  11.   Parameters of Super Gen Ⅱ image intensifier

    SHD-3 XD-4 XR-5 XP-6 Unit
    PR 500 600 700 1000 μA⋅lm-1
    RES 50 60 64 64 lp⋅mm-1
    SNR 18 20 25 28 -
    Gain 10000-16000 10000-17500 10000-17500 15000-20000 cd⋅m-2⋅lx-1
    Year 1999 2000 2002 2014 -
    下载: 导出CSV

    表  12  像增强器性能参数比较

    Table  12.   Comparison between different image intensifier

    RES/lp⋅mm-1 SNR FOM EBI/lx Gain/cd⋅m-2⋅lx-1
    1144# 64 28.1 1800 0.7×10-7 18000
    1151# 64 28.3 1800 1.5×10-7 12000
    下载: 导出CSV
  • [1] 张敬贤, 李玉丹, 金伟其. 微光与红外成像技术[M]. 北京: 北京理工大学出版社, 1995: 29-35.

    ZHANG Jingxian, LI Yudan, JIN Weiqi. Low-light-level and Infrared Imaging Technology[M]. Beijing: Beijing Institute of Technology Press, 1995: 29-35.
    [2] 周立伟, 刘玉岩. 目标探测与识别[M]. 北京: 北京理工大学出版社, 2002: 79-100.

    ZHOU Liwei, LIU Yuyan. Object Detection and Origin[M]. Beijing: Beijing Institute of Technology Press, 2002: 79-100.
    [3] 程宏昌, 石峰, 李周奎, 等. 微光夜视器件划代方法初探[J]. 应用光学, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm

    CHENG Hongchang, SHI Feng, LI Zhoukui, et al. Preliminary study on distinguishment method of low-level-light night vision devices[J]. Journal of Applied Optics, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm
    [4] 郭晖, 向世明, 田民强. 微光夜视技术发展动态评述[J]. 红外技术, 2013, 35(2): 63-68. http://hwjs.nvir.cn/article/id/hwjs201302003

    GUO Hui, XIANG Shiming, TIAN Minqiang. A review of development of low light level night vision technology[J]. Infrared Technology, 2013, 35(2): 63-68. http://hwjs.nvir.cn/article/id/hwjs201302003
    [5] 田金生. 低照度微光传感器的最新进展[J]. 红外技术, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001

    TIAN Jinsheng. New development of low level imaging sensor technology[J]. Infrared Technology, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001
    [6] Laprade B N, Reinhart S T, Wheeler M, et al. Low-noise-figure microchannel plate optimized for Gen III image intensification systems[C/OL]//SPIE of Electron Image Tubes and Image Intensifiers, 1990, 1243: https://doi.org/10.1117/12.19476.
    [7] Feller W B. Low noise and conductively cooled microchannel plates[C]//Proc. of SPIE Electron Image Tubes and Image Intensifiers, 1990, 1243:doi: 10.1117/12.19475.
    [8] Conti L, Barnstedt J, Hanke L, et al. MCP Detector Development for UV Space Missions[J]. Astrophysics and Space Science, 2018, 363(4): 63-71. doi:  10.1007/s10509-018-3283-4
    [9] 周异松. 电真空成像器件及理论分析[M]. 北京: 国防工业出版社, 1989.

    ZHOU Yisong. Electric Vacuum Imaging Device and Its Theoretical Analysis[M]. Beijing: National Defense Industry Press, 1989.
    [10] 向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 2006.

    XIANG Shiming, NI Guoqiang. The Principle of Photoelectronic Imaging Device[M]. Beijing: National Defense Industry Press, 2006.
    [11] 常本康. 多碱光电阴极[M]. 北京: 兵器工业出版社, 2001.

    CHANG Benkang. Multi-Alkali Photocathode[M]. Beijing: Ordnance Industry Press, 2001.
    [12] 李晓峰, 刘如彪, 赵学峰. 多碱阴极光电发射机理研究[J]. 光子学报, 2011, 40(9): 1438-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm

    LI Xiaofeng, LIU Rubiao, ZHAO Xuefeng. Photoemission mechanism of multi-alkali cathode[J]. Acta Photonica Sinica, 2011, 40(9): 1438-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm
    [13] 李晓峰, 陆强, 李莉, 等. 超二代像增强器多碱阴极膜厚测量研究[J]. 光子学报, 2012, 41(11): 1377-1381. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201211023.htm

    LI Xiaofeng, LU Qiang, LI Li. Thickness measurement of multi-alkali photocathode[J]. Acta Photonica Sinica, 2012, 41(11): 1377-1381. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201211023.htm
    [14] 李晓峰. 超二代像增强器多碱阴极光电发射特性研究[J]. 光子学报, 2013, 42(1): 1435-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201301001.htm

    LI Xiaofeng. Photoemission process study of multi-alkali photocathode in the super second generation image intensifier[J]. Acta Photonica Sinica, 2013, 42(1): 1435-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201301001.htm
    [15] 李晓峰, 杨文波, 王俊. 用光致荧光研究多碱阴极光电发射机理[J]. 光子学报, 2012, 41(12): 1435-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm

    LI Xiaofeng, YANG Wenbo, WANG Jun. Photoemission mechanism of multi-alkali photocathode by photoluminescence[J]. Acta Photonica Sinica, 2012, 41(12): 1435-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm
    [16] 常本康. GaAs光电阴极[M]. 北京: 科学出版社, 2001.

    CHANG Benkang. GaAs Photocathode[M]. Beijing: Science Press, 2001.
    [17] 常本康. GaAs基光电阴极[M]. 北京: 科学出版社, 2017.

    CHANG Benkang. Photocathode Base on GaAs[M]. Beijing: Science Press, 2017.
    [18] ZHANG Yijun, CHANG Benkang, YANG Zhi, et al. Distributuion of carriers in gradient-doping transmission-mode GaAs photocathodes grown by molecular beam epitaxy[J]. Chinese Physics B, 2009, 18(10): 4541-4546. doi:  10.1088/1674-1056/18/10/074
    [19] ZHAO Jing, CHANG Benkang, XIONG Yajuan, et al. Influence of the antireflection, window and active layers on optical properties of exponential-doping transmission-mode GaAs photocade modules[J]. Optics Communications, 2012, 285(5): 589-593.
    [20] 李晓峰, 张景文, 高宏凯, 等. 三代管MCP离子阻挡膜研究[J]. 光子学报, 2001, 30(12): 1496-1499. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200112014.htm

    LI Xiaofeng, ZHANG Jingwen, GAO Hongkai, et al. Ion barrier of MCP in the third generation image intensifier[J]. Acta Photonica Sinica, 2001, 30(12): 1496-1499. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200112014.htm
    [21] 杨晓军, 李丹, 乔凯, 等. 防离子反馈微通道板表面碳污染去除的试验研究[J]. 红外技术, 2020, 42(8): 747-751. http://hwjs.nvir.cn/article/id/hwjs202008007

    YANG Xiaojun, LI Dan, QIAO Kai, et al. Experimental study of C pollution removal from microchannel plate with ion barrier film[J]. Infrared Technology, 2020, 42(8): 509-518. http://hwjs.nvir.cn/article/id/hwjs202008007
    [22] Jan Van Spijker. Ion barrier membrane for use in a vacuum tube using electron multiplying, an electron multiplying structure for use in a vacuum tube using electron multiplying as well as a vacuum tube using electron multiplying provided with such an electron multiplying structure[P]. U. S. : 8, 471, 444B2[P]. [2013-01-25].
    [23] Roaux E, Richard J C, Piaget C. Third-Generation Image Intensifier[J]. Advances in Electronics and Electron Physics, 1985, 64A: 71-75.
    [24] Pollehn H K. Performance and reliability of third-generation image intensifier[J]. Advances in Electronics and Electron Physics, 1985, 64A: 61-69.
    [25] Jacques Dupuy, Joost Schrijvers, Gerard Wolzak. The super second generation image intensifier[C/OL]//SPIE, 1989, 1072: 0014.
    [26] Bosch L A, Boskma L. The Performance of DEP Super Generation Image Intensifier[C]//Proc. of SPIE, 1994, 2272: 110212.
    [27] YAN Baojin, LIU Shulin, HENG Yuekun. Nano-oxide thin films deposited via atomic layer deposition on microchannel[J]. Nanoscale Research Letters, 2015, 10(1): 1-10.
    [28] 丛晓庆, 邱祥彪, 孙建宁, 等. 原子层沉积法制备微通道板发射层的特性[J]. 红外与激光工程, 2016, 45(9): 0916002.

    CONG Xiaoqing, QIU Xiangbiao, SUN Jianning, et al. Properties of microchannel plate emission layer deposited by atomic layer deposition[J]. Infrared and Laser Engineering, 2016, 45(9): 1-10.
    [29] Nutzel G. Image intensifier for night vision device[P]. U. S. : Patent 0, 886, 095B2, [2021-01-05].
    [30] 山东鑫茂奥耐特复合固体润滑工程技术有限公司. 一种金属表面超声波镶嵌纳米金刚石的方法[P]. 中国: CN201510283605, [2015-08-20].

    Shandong Xingmao aonaite compound lubricating oil technology company. A method of ultrasonic embedding nano diamond on metal surface[P]. China: CN201510283605, [2015-08-20].
    [31] 李晓峰, 李廷涛, 曾进能, 等. 微通道板输入信号利用率提高研究[J]. 光子学报, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm

    LI Xiaofeng, LI Tingtao, ZENG Jinneng, et al. Study on the improvement of input signal utilization of MCP[J]. Acta Photonica Sinica, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm
    [32] 李丹, 朱宇峰, 赵慧民, 等. MCP噪声因子特性研究[J]. 红外技术, 2017, 39(11): 1066-1070. http://hwjs.nvir.cn/article/id/hwjs201711016

    LI Dan, ZHU Yufeng, ZHAO Huimin, et al. Research on noise factor characteristic of micro-channel plate[J]. Infrared Technology, 2017, 39(11): 1066-1070. http://hwjs.nvir.cn/article/id/hwjs201711016
    [33] 李晓峰, 常乐, 李金沙, 等. 微通道板噪声因子与工作电压关系研究[J]. 光子学报, 2020, 49(7): 0725002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202007003.htm

    LI Xiaofeng, CHANG Le, LI Jinsha, et al. Study on the relationship between noise factor and working voltage of microchannel plate[J]. Acta Photonica Sinica, 2020, 49(7): 0725002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202007003.htm
    [34] 李晓峰, 张正君, 丛晓庆, 等. 微通道板结构参数对噪声因子的影响研究[J]. 光子学报, 2021, 50(5): 0225001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202104016.htm

    LI Xiaofeng, ZHANG Zhenjun, CONG Xiaoqing, et al. Influence of microchannel plate structure parameters on noise factor[J]. Acta Photonica Sinica, 2021, 50(5): 0225001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202104016.htm
    [35] 刘元震, 王仲春, 董亚强. 电子发射与光电阴极[M]. 北京: 北京理工大学出版社, 1995.

    LIU Yuanzheng, WANG Zhongchun, DONG Yaqiang. Electron Emission and Photocathode[M]. Beijing: Beijing Science and Technology University Press, 1995.
    [36] 法国甫托尼公司. 具有改善的吸收率的半透明的光电阴极[P]. 中国: CN104781903A.

    [2015-07-15]. Photonis France. Sem-transparent photocathode with improved absorption rate[P]. China: CN104781903A [2015-07-15].
    [37] 李晓峰, 常乐, 曾进能, 等. 微通道板分辨力提高研究[J]. 光子学报, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm

    LI Xiaofeng, CHANG Le, ZENG Jinneng, et al. Study on resolution improvement of microchannel plate[J]. Acta Photonica Sinica, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm
    [38] 邱亚峰, 严武凌, 华桑暾. 基于电子追迹算法的微光像增强器分辨力研究[J]. 光子学报, 2020, 49(12): 1223003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202012003.htm

    QIU Yafeng, YAN Wuling, HUA Sangtun. Resolution research of low-light-level image intensifier based on electronic trajectory tracking[J]. Acta Photonica Sinica, 2020, 49(12): 1223003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202012003.htm
    [39] 李晓峰, 常乐, 赵恒, 等. 超二代与三代像增强器低照度分辨力比较研究[J]. 光子学报, 2021, 50(9): 0904003-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202109030.htm

    LI Xiaofeng, CHANG Le, ZHAO Heng, et al. Comparison of resolution between Super Gen. Ⅱ and Gen. Ⅲ image intensifier[J]. Acta Photonica Sinica, 2021, 50(9): 0904003-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202109030.htm
    [40] Hoenderken T H, Hagen C W, Nutzel G O, et al. Influence of the microchannel plate and anode gap parameters on the spatial resolution of an image intensifier[J]. Journal of Vaccum, Science and Technology, 2001, 19(30): 843-850.
    [41] Nutzel G. Fiber optic phosphor screen comprising angular filter[P]. U. S. : 8, 933, 419B2 [2015-01-13].
    [42] 潘京生. 像增强器的迭代性能及其评价标准[J]. 红外技术, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001

    PAN Jingsheng. Image intensifier upgraded performance and evaluation standard[J]. Infrared Technology, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001
    [43] 董煜辉, 黄丽书, 王俊, 等. 微光像增强器试验方法: WJ 2091-1992[S]. 北京: 中国标准出版社, 1992.

    DONG Yuhui, HUANG Lishu, WANG Jun, et al. Test method of image intensifier: WJ 2091-1992[S]. Beijing: Standards Press of China, 1992.
    [44] 董煜辉, 黄丽书, 王俊, 等. 像增强器通用规范: GJB 2000A-2020 [S]. 北京: 中国标准出版社, 2020.

    DONG Yuhui, HUANG Lishu, WANG Jun, et al. General specification of image intensifier: GJB 2000A-2020[S]. Beijing: Standards Press of China, 2020.
    [45] 李晓峰, 何雁彬, 常乐, 等. 超二代与三代像增强器性能的比较研究[J]. 红外技术, 2022, 44(8): 764-777. http://hwjs.nvir.cn/article/id/f450e48d-1281-422f-8ab5-d725f5a0ce3d

    LI Xiaofeng, HE Yanbin, CHANG Le, et al. Performance comparison between super second generation and third generation image intensifiers[J]. Infrared Technology, 2022, 44(8): 764-777. http://hwjs.nvir.cn/article/id/f450e48d-1281-422f-8ab5-d725f5a0ce3d
    [46] 周立伟. 关于微光像增强器的品质因数[J]. 红外与激光工程, 2004, 33(4): 331-337. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200404001.htm

    ZHOU Liwei. On quality factor of low light level image intensifier[J]. Infrared and Laser Engineering, 2004, 33(4): 331-337. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200404001.htm
  • 加载中
图(14) / 表(12)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  24
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-08
  • 修回日期:  2022-03-03
  • 刊出日期:  2022-12-20

目录

    /

    返回文章
    返回