留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线性斯特林制冷机逆变器的频率精度分析

陈蕊 孔德锐 唐天敏 夏明

陈蕊, 孔德锐, 唐天敏, 夏明. 线性斯特林制冷机逆变器的频率精度分析[J]. 红外技术, 2023, 45(1): 95-101.
引用本文: 陈蕊, 孔德锐, 唐天敏, 夏明. 线性斯特林制冷机逆变器的频率精度分析[J]. 红外技术, 2023, 45(1): 95-101.
CHEN Rui, KONG Derui, TANG Tianmin, XIA Ming. Frequency Accuracy Analysis of Linear Stirling Refrigerator Inverter[J]. Infrared Technology , 2023, 45(1): 95-101.
Citation: CHEN Rui, KONG Derui, TANG Tianmin, XIA Ming. Frequency Accuracy Analysis of Linear Stirling Refrigerator Inverter[J]. Infrared Technology , 2023, 45(1): 95-101.

线性斯特林制冷机逆变器的频率精度分析

详细信息
    作者简介:

    陈蕊(1996-),女,云南大理人,硕士研究生,研究方向:小型低温制冷机。E-mail:571313836@qq.com

    通讯作者:

    夏明(1977-),男,博士,研究员,主要从事小型低温制冷机研究。E-mail:15969586435@163.com

  • 中图分类号: TN214

Frequency Accuracy Analysis of Linear Stirling Refrigerator Inverter

  • 摘要: 线性斯特林制冷机在整个工作过程中,输入正弦交流电的频率精度是直接影响线性斯特林制冷机振动的重要因素。尤其是对于单活塞线性斯特林制冷机而言,输入的正弦交流电频率精度将直接影响到与之相连的动力吸振器的减振性能。基于此,本文在线性斯特林制冷机逆变器的研究基础上,通过对SPWM(Sinusoidal Pulse Width Modulation)波生成方法、逆变电路中MCU(MoneyWise Credit Union)时钟频率及滤波电路中截止频率、电容和电感等多个参数的分析,得到了开关数和频率精度之间的关系。根据实际应用的要求,线性斯特林制冷机逆变器输出实际频率与目标频率误差不得超过±0.1Hz,频率精度则需要求控制在±0.1%以内。所以在该应用条件下,本文在单片机MCU频率为72 MHz时找到了满足合适需求的开关次数在1400~2400之间,其对应的频率精度均小于±0.1%。
  • 图  1  单相逆变器原理

    Figure  1.  Schematic diagram of a single-phase inverter

    图  2  SPWM波生成原理

    Figure  2.  SPWM wave generation schematic

    图  3  LC低通滤波器原理图

    Figure  3.  Schematic of an LC low-pass filter

    图  4  低通滤波器截止频率原理

    Figure  4.  Schematic of the cutoff frequency of a low-pass filter

    图  5  时钟信号对应方波原理

    Figure  5.  Clock signal corresponding to square wave schematic

    图  6  实验搭建平台

    Figure  6.  Experimental platform construction

    图  7  70 Hz、2300次时实际频率精度图

    Figure  7.  Actual frequency accuracy at 70 Hz, 2300 times

    图  8  在70 Hz目标频率下,实际、理论频率误差对比柱状图

    Figure  8.  At a target frequency of 70 Hz, the actual and theoretical frequency errors are compared histograms

    图  9  实际频率精度以及计算的理论频率精度对比图

    Figure  9.  Comparison of actual frequency accuracy and calculated theoretical frequency accuracy

  • [1] Conrad T, Haley D, Lieb T, et al. FLIR FL-100 miniature linear stirling cryocooler development summary[C]//IOP Conference Series Materials Science and Engineering, 2020, 755: 0120451-6.
    [2] 孔德锐, 夏明, 李海英, 等. 单活塞线性压缩机用动力吸振器理论分析与Matlab仿真[J]. 红外技术, 2021, 43(10): 1014-1021. http://hwjs.nvir.cn/article/id/30dc0583-921a-4fc2-8860-d12d4e846edc

    KONG Derui, XIA Ming, LI Haiying, et al. Theoretical analysis and Matlab simulation of power shock absorber for single-piston linear compressor[J]. Infrared Technology, 2021, 43(10): 1014-1021. http://hwjs.nvir.cn/article/id/30dc0583-921a-4fc2-8860-d12d4e846edc
    [3] 王强, 王有政, 王天施, 等. 控制简单的节能型单相全桥逆变器[J]. 电子学报, 2022, 50(3): 5764-5768. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202203027.htm

    WANG Qiang, WANG Youzheng, WANG Tianshi, et al. Energy-saving single-phase full-bridge inverter with simple control[J]. Acta Electronica Sinica, 2022, 50(3): 5764-5768. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU202203027.htm
    [4] 庹元科, 徐定成, 傅剑锋, 等. 高效率并网逆变器发展综述[J]. 现代建筑电气, 2011(5): 451-454. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJQ201105014.htm

    YU Yuanke, XU Dingcheng, FU Jianfeng, et al. Review on the development of high-efficiency grid-connected inverter[J]. Modern Building Electrical, 2011(5): 451-454. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJQ201105014.htm
    [5] Berchowitz D M. Free-piston Stirling coolers International Refrigeration Conference Energy Efficiency and New Refrigerants[R]. Purdue University, 1992: 101417-101424.
    [6] Veprik A, Vilenchik H, Riabzev S, et al. Microminiature linear split stirling cryogenic cooler for portable infrared applications[C]//Proc. of SPIE, 2007, 6542: 65422F.
    [7] Korf H, Ruehlich I, Wiedmann T. Performance enhancement of linear stirling cryocoolers[C]//Proceedings of SPIE - The International Society for Optical Engineering, 2000, 4130: 380-384.
    [8] 周伟楠, 朱海峰, 陈雷, 等. 微型斯特林制冷机用柔性板弹簧性能分析[J]. 低温工程, 2019(6): 813-818. https://www.cnki.com.cn/Article/CJFDTOTAL-DWGC201906003.htm

    ZHOU Weinan, ZHU Haifeng, CHEN Lei, et al. Performance analysis of flexible leaf springs for miniature Stirling chillers[J]. Low Temperature Engineering, 2019(6): 813-818. https://www.cnki.com.cn/Article/CJFDTOTAL-DWGC201906003.htm
    [9] Veprik A, Zehter S, Vilenchik H, et al. Split Stirling linear cryogenic cooler for hightemperature infrared sensors[C]//Proc. SPIE, 2009, 7298: 729-816.
    [10] Veprik A M, Babitsky V I, Pundak N. Vibration control of linear split Stirling cryogenic cooler for airborne infrared application[J]. Shock and Vibration, 2000, 4256: 363-379. https://content.iospress.com/articles/shock-and-vibration/sav00124
    [11] 邢岩. 电力电子技术基础[M]. 北京: 机械工业出版社, 2008.

    XING Yan. Fundamentals of Power Electronics[M]. Beijing: China Machine Press, 2008.
    [12] Steinke J K. Use of an LC filter to achieve a motor-friendly performance of the PWM voltage source inverter[J]. IEEE Transactions on Energy Conversion, 1999, 14(3): 649-654. doi:  10.1109/60.790930
    [13] 程佩青. 数字信号处理教程[M]. 第三版, 北京: 清华大学出版社, 2007.

    CHENG Peiqing. Digital Signal Processing Tutorial[M]. Third Edition, Beijing: Tsinghua University Press, 2007.
    [14] 陈绍荣. 数字信号处理[M]. 北京: 国防工业出版社, 2016.

    CHEN Shaorong. Digital signal processing[M]. Beijing: National Defense Industry Press, 2016.
    [15] 伍家驹, 章义国, 任吉林, 等. 单相PWM逆变器的滤波器的一种设计方法[J]. 电气传动, 2003, 33(3): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DQCZ200303002.htm

    WU Jiajv, ZHANG Yiguo, REN Jilin, et al. A method to design of filter for single-phase PWM inverter[J]. Electric Drive, 2003, 33(3): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DQCZ200303002.htm
    [16] 俞杨威, 金天均, 谢文涛, 等. 基于PWM逆变器的LC滤波器[J]. 机电工程, 2007, 24(5): 350-352. https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC200705015.htm

    YU Yangwei, JIN Tianjun, XIE Wentao, et al. LC filter based on PWM inverter[J]. Mechanical and Electrical Engineering, 2007, 24(5): 350-352. https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC200705015.htm
    [17] 宋强, 刘文华, 严平贵, 等. 大容量PW电压源逆变的LC滤波器设计[J]. 清华大学学报: 自然科学版, 2003, 43(3): 345-348. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200303016.htm

    SONG Qiang, LIU Wenhua, YAN Pinggui, et al. LC filter design for inverter of large capacity PW voltage source[J]. Journal of Tsinghua University: Natural Science Edition, 2003, 43(3): 345-348. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200303016.htm
    [18] Rev A. LC Filter Design[M]. Texas: Texas Instruments Incorporated, 2016.
    [19] Steinke J K. Use of an LC filter to achieve a motor-friendly performance of the PWM voltage source inverter[J]. IEEE Transactions on Energy Conversion, 1999, 14(3): 649-654, doi:  10.1109/60.790930,651-652.
  • 加载中
图(9)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  55
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-27
  • 修回日期:  2022-06-23
  • 刊出日期:  2023-01-20

目录

    /

    返回文章
    返回