留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于轻量级金字塔密集残差网络的红外图像超分辨增强

左岑 杨秀杰 张捷 王璇

左岑, 杨秀杰, 张捷, 王璇. 基于轻量级金字塔密集残差网络的红外图像超分辨增强[J]. 红外技术, 2021, 43(3): 251-257.
引用本文: 左岑, 杨秀杰, 张捷, 王璇. 基于轻量级金字塔密集残差网络的红外图像超分辨增强[J]. 红外技术, 2021, 43(3): 251-257.
ZUO Cen, YANG Xiujie, ZHANG Jie, WANG Xuan. Super-resolution Enhancement of Infrared Images Using a Lightweight Dense Residual Network[J]. Infrared Technology , 2021, 43(3): 251-257.
Citation: ZUO Cen, YANG Xiujie, ZHANG Jie, WANG Xuan. Super-resolution Enhancement of Infrared Images Using a Lightweight Dense Residual Network[J]. Infrared Technology , 2021, 43(3): 251-257.

基于轻量级金字塔密集残差网络的红外图像超分辨增强

基金项目: 

重庆市教委课题 KJ1729409

重庆市教委教改重点项目 162072

详细信息
    作者简介:

    左岑(1986-),女,汉族,重庆垫江人,硕士,高级实验师,研究方向:计算机技术、模式识别等。E-mail:xuzq1979@outlook.com

  • 中图分类号: TP391

Super-resolution Enhancement of Infrared Images Using a Lightweight Dense Residual Network

  • 摘要: 现有的红外制导武器严重依赖操作手对目标的捕获,其捕获的精度与目标的纹理细节正相关。为了提升弱小区域的显示质量,满足现有导引头小型化、模块化、低成本的设计要求,本文设计了一种基于轻量级金字塔密集残差网络的图像增强模型,该模型在密集残差网络基础上通过密集连接层和残差网络来学习不同尺度图像之间的非线性映射,充分利用多尺度特征进行高频残差预测。同时,采用深度监督模块指导网络训练,有利于实现较大上采样因子的超分辨增强,提高其泛化能力。大量仿真实验结果表明本文所提出的超分辨模型能够获得高倍率的超分辨增强效果,其重建质量也优于对比算法。
  • 图  1  密集残差模块

    Figure  1.  Dense residual module

    图  2  不同算法的放大结果分析

    Figure  2.  SR results of different algorithms

    图  3  不同算法对CASIA数据集中真实红外定性分析

    Figure  3.  SR results of local region for different algorithms in CASIA dataset. (a) EDSR; (b) SRCNN; (c) Meta_SR; (d) GANSR; (E) SRMD; (f) proposed algorithm

    表  1  不同模块性能分析

    Table  1.   Performance analysis of different modules

    RL DC DS PSNR
    29.8
    29.9
    29.7
    31.7
    31.0
    31.8
    32.5
    下载: 导出CSV

    表  2  不同算法的重建指标对比

    Table  2.   Comparison of reconstruction indexes of different algorithms

    Images SRCNN EDSR Meta-SR GANSR SRMD Proposed
    1 PSNR 32.087 32.237 32.297 32.347 32.507 32.777
    SSIM 0.954 0.955 0.955 0.958 0.961 0.962
    2 PSNR 22.907 23.507 23.187 23.547 23.187 23.827
    SSIM 0.774 0.796 0.788 0.802 0.794 0.826
    3 PSNR 24.147 25.617 24.467 25.477 24.567 26.287
    SSIM 0.89 0.928 0.912 0.931 0.901 0.948
    4 PSNR 32.767 32.697 32.777 32.787 33.047 33.087
    SSIM 0.87 0.867 0.868 0.868 0.879 0.878
    5 PSNR 29.297 30.207 29.557 30.167 29.567 30.487
    SSIM 0.898 0.911 0.906 0.913 0.905 0.921
    6 PSNR 28.657 28.557 28.557 28.697 28.627 29.037
    SSIM 0.952 0.953 0.957 0.957 0.96 0.964
    Average PSNR 28.307 28.807 28.467 28.837 28.577 29.247
    SSIM 0.901 0.912 0.902 0.914 0.915 0.929
    下载: 导出CSV
  • [1] 廖小华, 陈念年, 蒋勇, 等. 改进的卷积神经网络红外图像超分辨率算法[J]. 红外技术, 2020, 42(1): 075-80. http://hwjs.nvir.cn/article/id/hwjs202001011

    LIAO Xiaohua, CHEN Niannian, JIANG Yong, et al. Infrared image super-resolution using improved convolutional neural network[J]. Infrared Technology, 2020, 42(1): 075-80. http://hwjs.nvir.cn/article/id/hwjs202001011
    [2] 田广强. 一种新颖高效的红外动态场景多目标检测跟踪[J]. 红外技术, 2018, 40(3): 259-263. http://hwjs.nvir.cn/article/id/hwjs201803010

    TIAN Guangqiang. A novel algorithm for efficient multi-object detection and tracking for infrared dynamic frames[J]. Infrared Technology, 2018, 40(3): 259-263. http://hwjs.nvir.cn/article/id/hwjs201803010
    [3] 曾金发, 吴恩斯, 李能勇. 基于双核协同学习模型的红外目标跟踪算法[J]. 红外技术, 2018, 40(5): 438-443. http://hwjs.nvir.cn/article/id/hwjs201805006

    ZENG Jinfa, WU Ensi, LI Nengyong. Infrared object-tracking algorithm based on dual-kernelized collaborative learning[J]. Infrared Technology, 2018, 40(5): 438-443. http://hwjs.nvir.cn/article/id/hwjs201805006
    [4] 韩团军, 尹继武. 一种鲁棒的自适应更新策略的弹载计算机红外目标跟踪算法[J]. 红外技术, 2018, 40(7): 625-631. http://hwjs.nvir.cn/article/id/hwjs201807001

    HAN Tuanjun, YIN Jiwu. Robust adaptive updating strategy for missile-borne infrared object-tracking algorithm[J]. Infrared Technology, 2018, 40(7): 625-631 http://hwjs.nvir.cn/article/id/hwjs201807001
    [5] 艾志伟, 嵇建波, 李静, 等. 快速反射镜状态模型构建方法及其控制系统设计[J]. 红外技术, 2020, 42(1): 40-45. http://hwjs.nvir.cn/article/id/hwjs202001006

    AI Zhiwei, JI Jianbo, LI Jing, et al. State model construction method for fast steering mirror and its control system design[J]. Infrared Technology, 2020, 42(1): 040-45. http://hwjs.nvir.cn/article/id/hwjs202001006
    [6] DONG C, Loy C C, He K, et al. Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision, 2014: 184-199.
    [7] Riegler G, Rther M, Bischof H. ATGV-Net: accurate depth super resolution[C]//Proc. Eur. Conf. Comput. Vis., 2016: 268-284.
    [8] SHI Y, LI S, LI W, et al. Fast and Lightweight Image Super-resolution based on dense residuals two-channel network[C]//2019 IEEE International Conference on Image Processing (ICIP), 2019: 2826-2830.
    [9] WANG Wei, JIANG Yongbin, LUO Yanhong, et al. An advanced deep residual dense network(DRDN) approach for image super-resolution[J]. International Journal of Computational Intelligence Systems, 2019, 12(2): 1592-1601. doi:  10.2991/ijcis.d.191209.001
    [10] WU Y, JI X, JI W, et al. CASR: a context-aware residual network for single-image super-resolution[J]. Neural Computing and Applications, 2019: 1-16. doi:  10.1007/s00521-019-04609-8%3Fshared-article-renderer
    [11] 杨明, 王璇, 高宏伟. 基于多级深度网络的高清晰度红外电子变倍算法[J]. 弹箭与制导学报, 2020, 40(4): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD202004004.htm

    YANG Ming, WANG Xuan, GAO Hongwei. High-definition infrared electronic zooming algorithm based on multi-level deep network[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(4): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DJZD202004004.htm
    [12] HUI T, Loy C C, TANG X. Depth map super-resolution by deep multi-scale guidance[C]//Proc. Eur. Conf. Comput. Vis., 2016: 353-369.
    [13] QIU Y, WANG R, TAO D, et al. Embedded block residual network: a recursive restoration model for single-image super - resolution[C]//Proceedings of the IEEE International Conference on Computer Vision, 2019: 4180-4189.
    [14] CAO Y, HE Z, YE Z, et al. Fast and accurate single image super - resolution via an energy-aware improved deep residual network[J]. Signal Processing, 2019, 162: 115-125. doi:  10.1016/j.sigpro.2019.03.018
    [15] Anwar S, Barnes N. Densely residual Laplacian super-resolution[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence [2020-09-20](DOI: 10.1109/TPAMI.2020.3021088).
    [16] WANG Z, Chen J, Hoi S C H. Deep learning for image super-resolution: a survey[J/OL]. IEEE Trans Pattern Anal Mach Intell.[2020-09-20]. https://ieeexplore.ieee.org/document/9185010 (doi: 10.1109/TPAMI.2020.2982166).
    [17] LONG J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// Proc. Conf. Comput. Vis. Pattern Recognit, 2015: 3431-3440.
    [18] HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: Surpassing human-level performance on image net classification[C]//Proc. Int. Conf. Comput. Vis., 2015: 1026-1034.
    [19] Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 136-144.
    [20] HUI T W, Loy C C, TANG X. Depth map super-resolution by deep multi-scale guidance[C]//European Conference on Computer Vision, Springer, 2016: 353-369.
    [21] Guei A C, Akhloufi M. Deep learning enhancement of infrared face images using generative adversarial networks[J]. Applied Optics, 2018, 57(18): 98-107. doi:  10.1364/AO.57.000D98
    [22] ZHANG X, LI C, MENG Q, et al. Infrared image super resolution by combining compressive sensing and deep learning[J]. Sensors, 2018, 18(8): 2587-2599. doi:  10.3390/s18082587
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  569
  • HTML全文浏览量:  148
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-19
  • 修回日期:  2020-03-23
  • 刊出日期:  2021-04-02

目录

    /

    返回文章
    返回