留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子点合成及其光电功能薄膜研究进展

钟和甫 唐利斌 余黎静 左文彬

钟和甫, 唐利斌, 余黎静, 左文彬. 量子点合成及其光电功能薄膜研究进展[J]. 红外技术, 2022, 44(2): 103-114.
引用本文: 钟和甫, 唐利斌, 余黎静, 左文彬. 量子点合成及其光电功能薄膜研究进展[J]. 红外技术, 2022, 44(2): 103-114.
ZHONG Hefu, TANG Libin, YU Lijing, ZUO Wenbin. Research Progress of Quantum Dots Synthesis and Their Photoelectric Functional Films[J]. Infrared Technology , 2022, 44(2): 103-114.
Citation: ZHONG Hefu, TANG Libin, YU Lijing, ZUO Wenbin. Research Progress of Quantum Dots Synthesis and Their Photoelectric Functional Films[J]. Infrared Technology , 2022, 44(2): 103-114.

量子点合成及其光电功能薄膜研究进展

基金项目: 

国家重点研发计划 2019YFB2203404

云南省创新团队项目 2018HC020

详细信息
    作者简介:

    钟和甫(1995-),男,硕士研究生,研究方向是量子点光电探测材料与器件

    通讯作者:

    唐利斌(1978-),男,正高级工程师,博士生导师,主要从事光电材料与器件的研究。E-mail: sscitang@163.com

  • 中图分类号: TB383

Research Progress of Quantum Dots Synthesis and Their Photoelectric Functional Films

  • 摘要: 量子点(quantum dots,QDs),也被称为半导体纳米晶体,得益于其廉价的制造成本和独特的光学物理学特性,已经广泛应用于光电探测器和太阳能电池的设计和开发。而量子点的合成则是制备光电探测器和太阳能电池的重要组成部分之一。本文对几种不同的量子点合成技术进行了概述,对国内外不同的基于量子点的光电探测器和太阳能电池进行了归纳和总结,并比较了不同种量子点薄膜的优缺点。最后,对量子点薄膜的发展进行了展望。
  • 图  1  胶体量子点的吸收光谱及不同类型的量子点材料: (a) 不同尺寸 PbS CQDs的太阳光谱及光吸收示意图[4];(b) 用于光电探测的不同类型的CQDs[29]

    Figure  1.  Absorption spectrum of CQDs and different types of CQDs materials: (a) Solar spectrum and schematic diagram of the light absorption of PbS CQDs of varying sizes[4]; (b) Different types of CQDs which applied in photodetection[29]

    图  2  反相微乳液法制备纳米晶体及其性质: (a) W/O型微乳液体法示意图;(b)和(c)不同煅烧温度下氧化锆纳米颗粒的TEM图像[36];(d)含水氧化锆颗粒的TEM图像[37];(e)和(f)具有不同水与活性剂摩尔比的A12O3纳米颗粒的TEM图像[38];(g) PbS CQDs的TEM图像[39];(h) PbS CQDs的粒径分布直方图[39];(i) PbS CQDs的XPS图谱[39]

    Figure  2.  Preparation of nanocrystals by reverse phase microemulsion method and their properties: (a) Schematic diagram of W/O microemulsion method; (b) and (c) TEM images of zirconia nanoparticles calcined at 650℃ and 750℃ for 1 h[36]; (d) TEM image of hydrous-zirconia nanoparticles[37]; TEM images of Al2O3nanoparticles with different mole ratios of water to surfactant: (e) ωo=10[38], (f) ωo=15[38]; (g) TEM image of PbS CQDs[39]; (h) Histogram of particle size distribution of PbS CQDs[39]; (i) XPS pattern of the PbS CQDs[39]

    图  3  正相微乳液法制备纳米晶体及其性质: (a) O/W型微乳液体法示意图;(b) Ag2Se纳米颗粒的TEM图像[42];(c) Ag2Se纳米颗粒的EDs图谱[42];(d) Ag2Se纳米颗粒的XRD图谱[42];(e) CoCrFeO4纳米颗粒的TEM图像[43];(f) CoCrFeO4纳米颗粒的XRD图谱[43]

    Figure  3.  Nanocrystals prepared by normal phase microemulsion method and their properties: (a) Schematic diagram of O/W microemulsion method; (b) TEM image of Ag2Se nanoparticles[42]; (c) EDs analyses of Ag2Se nanoparticles[42]; (d) XRD pattern of Ag2Se nanoparticles[42]; (e) TEM micrograph of CoCrFeO4nanoparticles with an average size of ~6nm[43]; (f) XRD pattern of 11-nm CoCrFeO4nanoparticles[43]

    图  4  热注射法制备纳米晶体及其性质: (a) 热注射法合成CQDs技术示意图[46];(b) Cu2FeSnS4纳米晶体的低分辨率TEM图像[47];(c)和(d) ZnFe2O4纳米颗粒的TEM图像[48];(e)和(f) CuSbS2纳米颗粒的TEM图像[49];(g)-(i)不同升温速率下完全生长的钴纳米颗粒的TEM图像[50]

    Figure  4.  Preparation of nanocrystals by thermal injection and their properties: (a) Schematic representation of the hot-injection CQDs synthesis technique[46]; (b) Low resolution TEM image of Cu2FeSnS4nanocrystals[47]; (c) and (d) TEM images of ZnFe2O4nano-particles[48]; (e) and (f) TEM images of CuSbS2nanoparticles[49]; (g)-(i) TEM images of full-grown Co nanoparticles with different temperature recovery rate (HI2: rapid temperature recovery, HI3: medium-rate recovery, HI4: slow recovery)[50]

    图  5  量子点红外光电探测器及其性能: (a) HgTe CQDs光电探测器阵列[51];(b) 不同尺寸HgTe CQDs的红外吸光度[51];(c) HgSe CQDs红外光电探测器结构设计图[52];(d) 不同尺寸HgSe CQDs的红外吸光度[52];(e) Si/PbS CQDs光电探测器结构示意图[53];(f)和(g) Si/PbS异质结的能带示意图[53];(h) PbS CQDs光电探测器的响应率曲线图[54];(i) PbS CQDs光电探测器的探测率曲线图[54]

    Figure  5.  Quantum dots infrared photodetectors and their performances: (a) Image of HgTe CQDs photodetectors array[51]; (b) IR absorbance of HgTe CQDs with different sizes[51]; (c) Structure scheme of HgSe CQD IR photodetector[52]; (d) IR absorbances for small and large HgSe CQD[52]; (e) Structure of the Si/PbS CQDs photodetector[53]; Energy band diagram of Si/PbS heterojunction: (f) Inverted heterojunction and (g) normal heterojunction[53]; (h) Responsivity curve of PbS CQDs photodetector[54]; (i) Detectivity curve of PbS CQDs photodetector[54

    图  6  量子点光电二极管及其性能: (a) ITO/ZnO/PbSxSe1-xCQDs/Au光电二极管截面SEM图像[55];(b) ITO/ZnO/PbSxSe1-xCQDs/Au光电二极管的I-V特性稳定性测试结果[55];(c) Au/PbS CQDs/ITO光电二极管结构示意图[56];(d) Au/PbS CQDs/ITO光电二极管探测率曲线图[56];(e) ITO/TiO2/HgTe CQDs/Au光电二极管结构示意图[57];(f) ITO/TiO2/HgTe CQDs/Au光电二极管响应率曲线图和探测率直方图[57];(g) ITO/ZnO/PbS CQDs/Au光电二极管结构示意图[58];(h) ITO/ZnO/PbS CQDs/Au光电二极管瞬态测试结果快速上升和下降边缘组成部分的放大示意图[58];(i) Ag2Se CQDs的吸收光谱和光致发光发射光谱[59]

    Figure  6.  Quantum dots photodiodes and their performances: (a) The SEM diagram of the cross-section of the ITO/ZnO/PbSxSe1-xCQDs/Au photodiode[55]; (b) Stability of I-V characteristics of ITO/ZnO/PbSxSe1-xCQDs/Au photodiode[55]; (c) Schematic of the Au/PbS CQDs/ITO photodiode structure[56]; (d) Detectivitie curve of the Au/PbS CQDs/ITO photodiode[56]; (e) Scheme of ITO/TiO2/HgTe CQDs/Au photodiode structure[57]; (f) Responsivity curve and detectivity histogram of ITO/TiO2/HgTe CQDs/ Au photodiode[57]; (g) Schematic of ITO/ZnO/PbS CQDs/Au photodiode structure[58]; (h) Zoom-in transient photocur- rent test showing components of fast rise and fall edges of ITO/ZnO/PbS CQDs/Au photodiode[58]; (i) Absorption spectrum and photoluminescence emission spectrum[59]

    图  7  量子点太阳能电池及其性能: (a) SSLX PbS CQDs固体薄膜的AFM图像[60];(b) LSLX PbS CQDs固体薄膜的AFM图像[60];(c) ITO/ZnO/PbS QDs太阳能电池截面SEM图像[61];(d) ITO/ZnO/PbS QDs太阳能电池的J-V曲线图[61];(e) ITO/ZnO/PbSe QDs/PbS QDs/Au太阳能电池结构示意图[62];(f) 不同浓度PbSe QDs油墨的胶体稳定性示意图[62];(g) FTO/TiO2/PbS CQDs/Au太阳能电池结构示意图[63];(h) FTO/TiO2/PbS CQDs/Au太阳能电池的PCE曲线图[63];(i) ITO/ZnO/PbS CQDs/BHJ太阳能电池的J-V曲线图和PCE直方图[64]

    Figure  7.  Quantum dots solar cells and their performances: (a) AFM image of the SSLX PbS CQDs solid film[60]; (b) AFM image of the LSLX PbS CQDs solid film[60]; (c) SEM image of the cross-section of the ITO/ZnO/PbS QDs solar cell[61]; (d) J-V curves of ITO/ZnO/PbS QDs solar cell[61]; (e) Scheme of the ITO/ZnO/PbSe QDs/PbS QDs/Au solar cell architecture[62]; (f) Colloidal stability of PbSe QD inks with different concentrations[62]; (g) Schematic diagram of the FTO/TiO2/PbS CQDs/Au solar cell structure[63]; (h) Statistical distribution of PCEs for FTO/TiO2/PbS CQDs/Au solar cell[63]; (i) J-V curves and PCE histograms of ITO/ZnO/PbS CQDs/BHJ solar cell[64]

    表  1  不同量子点光电探测材料体系及其探测器件的主要性能指标

    Table  1.   Different quantum dots photoelectric detection material systems and the main performance indexes of detectors

    Method Device structure Area/
    mm2
    Illumination/nm D*/
    Jones
    R/(AW-1) Ref.
    Spin-coated Si/SiO2/MoS2/PbS-EDT/Ti/Au - 700 7×1014 6×105 [5]
    Si/SiO2/ZnO/QDs/TiO2/Al - 520 - 6.84×10-2 [6]
    PMMA/PAA/Poly-TPD: PCBM/CsPbBr3QD/ Poly-TPD: PCBM - 440-600 2.2×1011 8×10-2 [7]
    Si/SiO2/1L-MoS2/PbS QDs - 850 1×1011 5.4×104 [8]
    MoS2/TiO2/PbS - 635 5×1012 105 [9]
    Si(p-doped)/SiO2/TMDC/PbS CQD/Au - 1800 > 1012 1400 [10]
    Si/SiO2/ZnO/PbS/Al - 640 7.9×1012 10.9 [11]
    Si/SiO2/PbS/CH3NH3PbI3/Au 0.05 365 4.9×1013 - [12]
    Polyimide/ITO/HgTe CQDs/Au - 2200 7.5×1010 0.5 [13]
    Glass/ITO/NiO/PbS/ZnO/Al 4.6 600 1.2×1012 - [14]
    PbS-QD/InGaZnO - 1310 1012 104 [15]
    SiO2/Si/WSe2/PbS/Au - 970 7×1013 2×105 [16]
    Si/SiO2/ SnTe QDs/Ti/Au - 940 1.3×109 3.7 [17]
    Si/SiO2/ graphene/ PbS - 950/1450 7×1013 107 [18]
    Si/SiO2/MoS2/TiO2/HgTe CQDs - 2000 1012 106 [19]
    Si/SiO2/HgTe QDs/PMMA 0.048 5000 5.4×1010 - [20]
    Si/SiO2/Poly-TPD: PCBM/QDs/Poly-TPD: PCBM/Au PD - 400-800 3.8×1011 0.86 [21]
    Drop-casted Al/Si/Bi2Se3/HgTe CQDs/Graphene/Au - 2400 5×109 0.9 [22]
    Si/SiO2/Gold mirror/HgTe CQDs 1.6 1550 109 1 [23]
    Si/SiO2/graphene/PbS QDs/Au - 895 - 1×107 [24]
    ITO/graphene: CdSe QDs/CdS nanorods/Ag - 530 6.85×1012 15.95 [25]
    Inkjet-printed Ag/ZnO/PbS ink 1 950 2×1012 1.5 [26]
    Nanoprinted Si/SiO2/graphene/PbS CQDs - 1280 ≥1010 - [27]
    Spray-casted MXene/PbS QDs - 470 2.4×1011 1.15×102 [28]
    下载: 导出CSV
  • [1] LI Y, DING Y, ZHANG Y, et al. Photophysical properties of ZnS quantum dots[J]. Journal of Physics and Chemistry of Solids, 1999, 60(1): 13-15. doi:  10.1016/S0022-3697(98)00247-9
    [2] Albaladejo-Siguan M, Baird E C, Becker-Koch D, et al. Stability of quantum dot solar cells: a matter of (life)time[J]. Adv. Energy Mater, 2021, 11(12): 2003457. doi:  10.1002/aenm.202003457
    [3] Efros A L, Brus L E. Nanocrystal quantum dots: from discovery to modern development[J]. ACS Nano, 2021, 15(4): 6192-6210. doi:  10.1021/acsnano.1c01399
    [4] ZHENG S, CHEN J, Johansson E M J, et al. PbS colloidal quantum dot inks for infrared solar cells[J]. I Science, 2020, 23(11): 101753.
    [5] Kufer D, Nikitskiy I, Lasanta T, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors[J]. Adv. Mater. 2015, 27(1): 176-180.
    [6] Kim B J, Park S, Kim T Y, et al. Improving the photoresponsivity and reducing the persistent photocurrent effect of visible-light ZnO/quantum-dot phototransistors via a TiO2layer[J]. J. Mater. Chem. C, 2020, 8(46): 16384. doi:  10.1039/D0TC03353G
    [7] ZHAO C, LIU Y, CHEN L Y, et al. Transparent CsPbBr3quantum dot photodetector with a vertical transistor structure[J]. ACS Appl. Electron. Mater., 2021, 3(1): 337-343. doi:  10.1021/acsaelm.0c00877
    [8] Pak S, Cho Y, Hong J, et al. Consecutive junction-induced efficient charge separation mechanisms for high-performance MoS2/quantum dot photo-transistors[J]. ACS. Appl. Mater. Interfaces, 2018, 10(44): 38264-38271. doi:  10.1021/acsami.8b14408
    [9] Kufer D, Lasanta T, Bernechea M, et al. Interface engineering in hybrid quantum dot−2D phototransistors[J]. ACS Photonics, 2016, 3(7): 1324-1330. doi:  10.1021/acsphotonics.6b00299
    [10] Zdemir O, Ramiro I, Gupta S, et al. High sensitivity hybrid PbS CQD-TMDC photodetectors up to 2 μm[J]. ACS Photonics, 2019, 6(10): 2381-2386. doi:  10.1021/acsphotonics.9b00870
    [11] WANG X, XU K, YAN X, et al. Amorphous ZnO/PbS quantum dots heterojunction for efficient responsivity broadband photodetectors[J]. ACS Appl. Mater. Interfaces, 2020, 12(7): 8403-8410. doi:  10.1021/acsami.9b19486
    [12] ZHANG J, XU J, CHEN T, et al. Toward broadband imaging: surface-engineered PbS quantum dot/perovskite composite integrated ultra- sensitive photodetectors[J]. ACS Appl. Mater. Interfaces, 2019, 11(47): 44430-44437. doi:  10.1021/acsami.9b14645
    [13] TANG X, Ackerman M M, SHEN G, et al. Towards infrared electronic eyes: flexible colloidal quantum dots photovoltaic detectors enhanced by resonant cavity[J]. Small, 2019, 15(12): 1804920. doi:  10.1002/smll.201804920
    [14] Manders J R, LAI T H, AN Y, et al. Low-noise multispectral photodetectors made from all solution-processed inorganic semiconductors[J]. Adv. Funct. Mater., 2014, 24(45): 7205-7210. http://www.researchgate.net/profile/Yanbin_An/publication/265645931_Low-Noise_Multispectral_Photodetectors_Made_from_All_Solution-Processed_Inorganic_Semiconductors/links/56323fd908ae242468d9c907.pdf
    [15] Choi H T, KANG J H, Ahn J, et al. Zero-dimensional PbS quantum dot−InGaZnO film heterostructure for short-wave infrared flat-panel imager[J]. ACS Photonics, 2020, 7(8): 1932-1941. doi:  10.1021/acsphotonics.0c00594
    [16] HU C, DONG D, YANG X, et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2toward high performance and broadband phototransistors[J]. Adv. Funct. Mater., 2016, 27(2): 1603605. http://d.wanfangdata.com.cn/periodical/3f27bb3093bd0e5e84f5ab294b6ef2aa
    [17] FENG Y, CHANG H, LIU Y, et al. Ultralow dark current infrared photodetector based on SnTe quantum dots beyond 2 μm at room temperature[J]. Nanotechnology, 2021, 32(19): 195602. doi:  10.1088/1361-6528/abde64
    [18] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid grapheme-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368. doi:  10.1038/nnano.2012.60
    [19] HUO N, Gupta S, Konstantatos G, et al. MoS2-HgTe quantum dot hybrid photodetectors beyond 2 µm[J]. Adv. Mater., 2017, 29(17): 1606576. doi:  10.1002/adma.201606576
    [20] CHEN M, LAN X, TANG X, et al. High carrier mobility in HgTe quantum dot solids improves mid-IR photodetectors[J]. ACS Photonics, 2019, 6(9): 2358-2365. doi:  10.1021/acsphotonics.9b01050
    [21] LIU Y, ZHAO C, LI J, et al. Highly sensitive CuInS2/ZnS core-shell quantum dot photodetectors[J]. ACS Appl. Electron. Mater., 2021, 3(3): 1236-1243. doi:  10.1021/acsaelm.0c01064
    [22] TANG X, CHEN M, Kamath A, et al. Colloidal quantum-dots/ graphene/silicon dual-channel detection of visible light and short-wave infrared[J]. ACS Photonics, 2020, 7(5): 1117-1121. doi:  10.1021/acsphotonics.0c00247
    [23] Chu A, Goubet N, Martinez B, et al. Near unity absorption in nanocrystal based short wave infrared photodetectors using guided mode resonators[J]. ACS Photonics, 2019, 6(10): 2553-2561. doi:  10.1021/acsphotonics.9b01015
    [24] SUN Z, LIU Z, LI J, et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity[J]. Adv. Mater, 2012, 24(43): 5878-5883. doi:  10.1002/adma.201202220
    [25] Veeramalai C P, Kollu P, LIN G, et al. Fabrication of graphene: CdSe quantum dots/CdS nanorod heterojunction photodetector and role of graphene to enhance the photoresponsive characteristics[J]. Nanotechnology, 2021, 23(31): 315204. doi:  10.1088/1361-6528/abf87a
    [26] Yousefi Amin A, Killilea N A, Sytnyk M, et al. Fully printed infrared photodetectors from PbS nanocrystals with Perovskite ligands[J]. ACS Nano, 2019, 13(2): 2389-2397. http://www.onacademic.com/detail/journal_1000041600212399_fa02.html
    [27] Grotevent M J, Hail C U, Yakunin S, et al. Temperature-dependent charge carrier transfer in colloidal quantum dot/graphene infrared photo- detectors[J]. ACS Appl. Mater. Interfaces, 2021, 13(1): 848-856. doi:  10.1021/acsami.0c15226
    [28] SUN Y, LIU Z, DING Y, et al. Flexible broadband photodetectors enabled by MXene/PbS quantum dots hybrid structure[J]. IEEE Electron Device Letters, 2021, 42(12): 1814-1817. doi:  10.1109/LED.2021.3120729
    [29] XU K, ZHOU W, NING Z. Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors[J]. Small, 2020, 16(47): 2003397. doi:  10.1002/smll.202003397
    [30] Jana M K, Chithaiah P, Murali B, et al. Near infrared detectors based on HgSe and HgCdSe quantum dots generated at the liquid-liquid interface[J]. J. Mater. Chem. C, 2013, 1(39): 6184. doi:  10.1039/c3tc31344a
    [31] HE J, QIAO K, GAO L et al. Synergetic effect of silver nanocrystals applied in PbS colloidal quantum dots for high-performance infrared photodetectors[J]. ACS Photonics, 2014, 1(10): 936-943. doi:  10.1021/ph500227u
    [32] Nikitskiy I, Goossens S, Kufer D, et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor[J]. Nature Communications, 2016, 7: 11954. doi:  10.1038/ncomms11954
    [33] Adinolfi V, Sargent E H. Photovoltage field-effect transistors[J]. Nature, 2017, 45(7653): 252-252. http://datadryad.com/handle/10255/dryad.132152
    [34] TANG X, Ackerman M M, CHEN M, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes[J]. Nature Photonics, 2019, 13(4): 277. doi:  10.1038/s41566-019-0362-1
    [35] GENG X, WANG F, TIAN H, et al. Ultrafast photodetector by integrating Perovskite directly on silicon wafer[J]. ACS Nano, 2020, 14(3): 2860-2868. doi:  10.1021/acsnano.9b06345
    [36] TAI C Y, Hsiao B Y. Characterization of zirconia powder synthesized via reverse microemulsion precipitation[J]. Chem. Eng. Comm. , 2005, 192(10-12): 1525-1540.
    [37] TAI C Y, Hsiao B Y, Chiu H Y. Preparation of spherical hydrous-zirconia nanoparticles by low temperature hydrolysis in a reverse microemulsion[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 237(1-3): 105-111. doi:  10.1016/j.colsurfa.2004.02.014
    [38] HUANG K, YIN L, LIU S, et al. Preparation and formation mechanism of A12O3nanoparticles by reverse microemulsion[J]. Trans. Nonfcrrous Met. Soc. China, 2007, 17(3): 633-637. doi:  10.1016/S1003-6326(07)60147-2
    [39] Khiew P S, Radiman S, HUANG N M, et al. Studies on the growth and characterization of CdS and PbS nanoparticles using sugar-ester nonionic water-in-oil microemulsion[J]. Journal of Crystal Growth, 2003, 254(1-2): 235-243. doi:  10.1016/S0022-0248(03)01175-8
    [40] Haouemi K, Touati F, Gharbi N. Characterization of a new TiO2nanoflower prepared by the Sol-Gel process in a reverse microemulsion[J]. J. Inorg Organomet Polym, 2011, 21(4): 929-936. doi:  10.1007/s10904-011-9587-2
    [41] CAO M, HE X, CHEN J, et al. Self-assembled nickel hydroxide three-dimensional nanostructures: a nanomaterial for alkaline rechargeable batteries[J]. Crystal Growth & Design, 2007, 7(1): 170-174. http://www.onacademic.com/detail/journal_1000035261945410_cdef.html
    [42] GE J, CHEN W, LIU L, et al. Formation of disperse nanoparticles at the oil/water interface in normal microemulsions[J]. Chem. Eur. J., 2006, 12(25): 6552-6558. doi:  10.1002/chem.200600454
    [43] Vestal C R, ZHANG Z J. Synthesis of CoCrFeO4Nanoparticles using microemulsion methods and size-dependent studies of their magnetic properties[J]. Chem. Mater., 2002, 14(9): 3817-3822. doi:  10.1021/cm020112k
    [44] XU J, YIN A, ZHAO J. Surfactant-free microemulsion composed of oleic acid, n‑propanol, and H2O[J]. J. Phys. Chem. B, 2013, 117(1): 450-456. doi:  10.1021/jp310282a
    [45] Colvin V L, Goldstein A N, Alivisatos A P. Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers[J]. J. Am. Chem. Soc., 1992, 114(13): 5221-5230. doi:  10.1021/ja00039a038
    [46] Kirmani A R, Luther J M, Abolhasani M, et al. Colloidal quantum dot photovoltaics: current progress and path to gigawatt scale enabled by smart manufacturing[J]. ACS Energy Lett., 2020, 5(9): 3069-3100. doi:  10.1021/acsenergylett.0c01453
    [47] YAN C, HUANG C, YANG J, et al. Synthesis and characterizations of quaternary Cu2FeSnS4nanocrystals[J]. Chem. Commun. , 2012, 48(20): 2603-2605. doi:  10.1039/c2cc16972j
    [48] Kulpa-Greszta M, Tomaszewska A, Dziedzic A, et al. Rapid hot-injection as a tool for control of magnetic nanoparticle size and morphology[J]. RSC Adv., 2021, 11(34): 20708-20719. doi:  10.1039/D1RA02977K
    [49] Ikeda S, Sogawa S, Tokai Y, et al. Selective production of CuSbS2, Cu3SbS3, and Cu3SbS4 nanoparticles using a hot injection protocol[J]. RSC Adv., 2014, 4(77): 40969-40972. doi:  10.1039/C4RA07648F
    [50] Timonen J V I, Ikkala O, Ras R H A. et al. From hot-injection synthesis to heating-up synthesis of cobalt nanoparticles: observation of kinetically controllable nucleation[J]. Angew. Chem. Int. Ed., 2011, 50(9): 2080-2084. doi:  10.1002/anie.201005600
    [51] TANG X, TANG X, Lai K W C. Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films[J]. ACS Photonics, 2016, 3(12): 2396-2404. doi:  10.1021/acsphotonics.6b00620
    [52] Lhuillier E, Scarafagio M, Hease P, et al. Infrared photodetection based on colloidal quantum-dot films with high mobility and optical absorption up to THz[J]. Nano Lett., 2016, 16(2): 1282-1286. doi:  10.1021/acs.nanolett.5b04616
    [53] XU K, XIAO X, ZHOU W, et al. Inverted Si: PbS colloidal quantum dot heterojunction-based infrared photodetector[J]. ACS Appl. Mater. Interfaces, 2020, 12(13): 15414-15421. doi:  10.1021/acsami.0c01744
    [54] Vafaie M, FAN J Z, Najarian A M, et al. Colloidal quantum dot photodetectors with 10-ns response time and 80% quantum efficiency at 1, 550nm[J]. Matter, 2021, 4(3): 1042-1053. doi:  10.1016/j.matt.2020.12.017
    [55] Sulaman M, YANG S, SONG T, et al. High performance solution-processed infrared photodiode based on ternary PbSxSe1-xcolloidal quantum dots[J]. RSC Adv., 2016, 6(90): 87730-87737. doi:  10.1039/C6RA19946A
    [56] TANG Y, WU F, CHEN F, et al. A colloidal-quantum-dot infrared photodiode with high photoconductive gain[J]. Small, 2018, 14(48): 1803158. doi:  10.1002/smll.201803158
    [57] Jagtap A, Martinez B, Goubet N, et al. Design of a unipolar barrier for a nanocrystal-based short-wave infrared photodiode[J]. ACS Photonics, 2018, 5(11): 4569-4576. doi:  10.1021/acsphotonics.8b01032
    [58] XU Q, MENG L, Sinha K, et al. Ultrafast colloidal quantum dot infrared photodiode[J]. ACS Photonics, 2020, 7(5): 1297-1303. doi:  10.1021/acsphotonics.0c00363
    [59] Graddage N, OUYANG J Y, LU J, et al. Near-infrared-II photodetectors based on silver selenide quantum dots on mesoporous TiO2scaffolds[J]. ACS Appl. Nano Mater., 2020, 3(12): 12209-12217. doi:  10.1021/acsanm.0c02686
    [60] ZHANG X, Cappel U B, JIA D, et al. Probing and controlling surface passivation of PbS quantum dot solid for improved performance of infrared absorbing solar cells[J]. Chem. Mater., 2019, 31(11): 4081-4091. doi:  10.1021/acs.chemmater.9b00742
    [61] YANG X, YANG J, Khan J, et al. Hydroiodic acid additive enhanced the performance and stability of PbS-QDs solar cells via suppressing hydroxyl ligand[J]. Nano-Micro Lett., 2020, 12(1): 37. doi:  10.1007/s40820-020-0372-z
    [62] LIU Y, LI F, SHI G, et al. PbSe quantum dot solar cells based on directly synthesized semiconductive inks[J]. ACS Energy Lett., 2020, 5(12): 3797-3803. doi:  10.1021/acsenergylett.0c02011
    [63] ZHANG Y, WU G, DING C, et al. Surface-modifed graphene oxide/lead sulfde hybrid film‑forming ink for high-efficiency bulk nano-heterojunction colloidal quantum dot solar cells[J]. Nano-Micro Lett., 2020, 12(9): 111. doi:  10.1007/s40820-020-00448-8?utm_medium=cpc&utm_campaign=Nano-Micro_Letters_TrendMD_1
    [64] ZHANG Y, KAN Y, GAO K, et al. Hybrid quantum dot/organic heterojunction: a route to improve open-circuit voltage in PbS colloidal quantum dot solar cells[J]. ACS Energy Lett., 2020, 5(7): 2335-2342. doi:  10.1021/acsenergylett.0c01136
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  69
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-25
  • 修回日期:  2022-02-09
  • 刊出日期:  2022-02-20

目录

    /

    返回文章
    返回