留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于红外图像处理的建筑外窗气密性能现场检测

张玲玲 任攀攀 许廒 张继冉 丁立斌 安朝封 吴松

张玲玲, 任攀攀, 许廒, 张继冉, 丁立斌, 安朝封, 吴松. 基于红外图像处理的建筑外窗气密性能现场检测[J]. 红外技术, 2023, 45(4): 410-416.
引用本文: 张玲玲, 任攀攀, 许廒, 张继冉, 丁立斌, 安朝封, 吴松. 基于红外图像处理的建筑外窗气密性能现场检测[J]. 红外技术, 2023, 45(4): 410-416.
ZHANG Lingling, REN Panpan, XU Ao, ZHANG Jiran, DING Libin, AN Chaofeng, WU Song. On-Site Detection of Airtightness of Building Windows Based on Infrared Image Processing[J]. Infrared Technology , 2023, 45(4): 410-416.
Citation: ZHANG Lingling, REN Panpan, XU Ao, ZHANG Jiran, DING Libin, AN Chaofeng, WU Song. On-Site Detection of Airtightness of Building Windows Based on Infrared Image Processing[J]. Infrared Technology , 2023, 45(4): 410-416.

基于红外图像处理的建筑外窗气密性能现场检测

基金项目: 

烟台大学研究生科技创新基金资助项目 KGIFYTU2235

详细信息
    作者简介:

    张玲玲(1972-),女,教授,研究方向:建筑节能与绿色建筑,E-mail: 305125954@qq.com

  • 中图分类号: TU111.4

On-Site Detection of Airtightness of Building Windows Based on Infrared Image Processing

  • 摘要: 针对目前建筑外窗气密性现场检测方法无法保证其所有安装外窗的气密性等级全部达标,同时缺乏高效、便捷的检测手段,提出一种外窗气密性能等级现场检测方法,通过热像仪对外窗进行红外图像采集,对图像中的异常区域进行缺陷检测并计算缺陷面积,建立外窗缺陷红外检测模型。根据实验测得的室内外温差、外窗缺陷面积、空气渗透量,建立外窗空气渗透量计算模型,将此模型与外窗缺陷红外检测模型结合求得窗户的空气渗透量,实现外窗气密性能的现场检测,初步判定外窗是否符合相应的气密性能等级,提高了外窗气密性能现场检测的效率,为外窗气密性能等级现场判定提供一种新的途径。
  • 图  1  外窗红外图像预处理结果

    Figure  1.  Infrared image preprocessing results of window

    图  2  各方法进行外窗缺陷检测结果

    Figure  2.  Detect results of the defects of windows by various methods

    图  3  外窗缺陷实验值与图像处理值的散点图

    Figure  3.  Scatter plot of the experimental value and the image processing value of the window defect

    图  4  外窗空气渗透量计算模型神经网络回归分析

    Figure  4.  Regression analysis diagram of calculating model of air infiltration amount of windows with neural network

    图  5  外窗原始红外图像

    Figure  5.  Original infrared image of the window

    图  6  外窗缺陷检测图像

    Figure  6.  Defect detection image of the window

    表  1  外窗缺陷面积对比

    Table  1.   Defect area comparison of windows

    Windows Value of experiment/cm2 Roberts/cm2 Sobel/cm2 Prewitt/cm2 Canny/cm2 Log/cm2 Threshold value segmentation/cm2
    C0407(1) 0.90 0.96 1.39 1.39 1.70 1.62 0.92
    C0407(2) 1.50 1.50 1.80 1.80 1.40 2.10 1.50
    C0709(1) 3.20 3.21 4.03 3.84 3.46 4.48 3.65
    C0814(1) 4.30 5.19 11.32 11.07 6.58 11.61 4.70
    C1218(1) 11.20 11.50 14.44 14.40 15.44 7.20 11.52
    C1218(2) 10.30 11.03 14.22 14.02 10.89 14.76 10.43
    C1716(1) 9.20 9.30 11.92 11.90 9.32 4.96 9.30
    C2114(1) 15.80 14.86 25.42 24.88 22.93 23.33 16.87
    C2114(2) 11.50 13.80 17.20 17.00 13.80 16.30 13.90
    C2418(1) 20.90 24.60 31.80 31.40 23.40 26.90 24.60
    下载: 导出CSV

    表  2  各处理方式误差汇总

    Table  2.   Summary of errors of each processing method

    Roberts Sobel Prewitt Canny Log Threshold segmentation
    7.36% 56.21% 53.86% 26.35% 61.92% 7.97%
    下载: 导出CSV

    表  3  外窗气密性能等级现场判定结果对比

    Table  3.   Comparison of site judgment results of airtightness performance grade of windows

    Windows Experimental result Model result Relative error
    Air permeability/(m3/h) Air permeability per unit area/(m3/(m2·h)) Air permeability/(m3/h) Air permeability per unit area/(m3/(m2·h))
    C0923 7.00 3.38 7.32 3.54 4.60%
    C0918 6.00 3.70 5.76 3.55 3.94%
    C1823 17.00 4.11 18.28 4.41 7.41%
    C0910 4.00 4.44 3.93 4.36 1.69%
    C0623 5.00 3.62 5.13 3.72 2.69%
    C0924 7.00 3.24 7.11 3.29 1.62%
    C1523 12.00 3.48 13.06 3.78 8.76%
    C1824 14.00 3.24 15.08 3.49 7.77%
    C1822 17.00 4.29 17.74 4.48 4.41%
    C1514 8.00 3.81 8.10 3.86 1.22%
    下载: 导出CSV
  • [1] 中国建筑节能协会. 中国建筑能耗研究报告2020[J]. 建筑节能, 2021, 49(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYY202102001.htm

    China Association of Building Energy Efficiency. China building energy consumption annual report 2020[J]. Building Energy Efficiency, 2021, 49(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYY202102001.htm
    [2] 郭兴忠, 杨闯, 张超, 等. 节能门窗热工性能对建筑能耗影响的模拟研究[J]. 建筑材料学报, 2014, 17(2): 261-265, 297. doi:  10.3969/j.issn.1007-9629.2014.02.014

    GUO Xingzhong, YANG Chuang, ZHNAG Chao, et al. Simulation on thermal performance of energy-saving windows and door and its influence on building energy consumption[J]. Journal of Building Materials, 2014, 17(2): 261-265, 297. doi:  10.3969/j.issn.1007-9629.2014.02.014
    [3] 中国建筑科学研究院. 建筑幕墙、门窗通用技术条件: GB/T 31433-2015[S]. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.

    China Academy of Building Research. General specification for building curtain wall, windows and doors: GB/T 31433-2015[S]. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China; Standardization Administration of the People's Republic of China.
    [4] 中国建筑科学研究院有限公司. 建筑外门窗气密、水密、抗风压性能检测方法: GB/T 7106-2019[S]. 国家市场监督管理总局, 国家标准化管理委员会.

    China Academy of Building Research. Test methods of air permeability, watertightness, wind load resistance performance for building external windows and doors: GB/T 7106-2019[S]. State Administration for Market Regulation; Standardization Administration.
    [5] 陈航. 建筑门窗三性检测方法及常见问题分析[J]. 建材发展导向, 2021, 19(20): 41-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YNJC202120019.htm

    CHEN Hang. Building doors and windows following detection method and the analysis of common problems [J]. Development Guide to Building Materials, 2021, 19(20): 41-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YNJC202120019.htm
    [6] 史国权. 建筑门窗工程检测方法及结果分析[J]. 建材与装饰, 2018, 40: 48-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYS201840033.htm

    SHI Guoquan. Testing methods and result analysis of building doors and windows engineering[J]. Construction Materials & Decoration, 2018, 40: 48-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYS201840033.htm
    [7] Figuli L, Papan D, Z Papánová, et al. Experimental mechanical analysis of traditional in-service glass windows subjected to dynamic tests and hard body impact[J]. Smart Structures and Systems, 2021, 27(2): 365-378.
    [8] Mohan A, Poobal S. Crack detection using image processing: a critical review and analysis[J]. Alexandria Engineering Journal, 2017, 57(2): 787-798.
    [9] Gehri N, J Mata-Falcón, Kaufmann W. Automated crack detection and measurement based on digital image correlation[J]. Construction and Building Materials, 2020, 256: 119383. doi:  10.1016/j.conbuildmat.2020.119383
    [10] Freitas S S D, Freitas V P D, Barreira E. Detection of fade plaster detachments using infrared thermography – a nondestructive technique[J]. Construction & Building Materials, 2014, 70: 80-87.
    [11] Ibarra-Castanedo C, Sfarra S, Klein M, et al. Solar loading thermography: time-lapsed thermographic survey and advanced thermographic signal processing for the inspection of civil engineering and cultural heritage structures[J]. Infrared Physics & Technology, 2017, 82: 56-74.
    [12] Thusyanthan I, Blower T, Cleverly W. Innovative uses of thermal imaging in civil engineering[C]//Proceedings of the Institution of Civil Engineers, 2017, 170(CE2): 81-87.
    [13] Ostańska Anna. Thermal imaging for detection of defects in envelopes of buildings in use: qualitative and quantitative analysis of building energy performance[J]. Periodica Polytechnica Civil Engineering, 2018, 62(4): 939-946.
    [14] Pan N H, Tsai C H, Chen K Y, et al. Enhancement of external wall decoration material for the building in safety inspection method[J]. Journal of Civil Engineering and Management, 2020, 26: 216-226.
    [15] Tiberio A J, Branchi P. A study of air leakage in residential buildings[C]//2013 International Conference on New Concepts in Smart Cities: Fostering Public and Private Alliances (SmartMILE) of IEEE, 2013: 1-4.
    [16] LI X, ZHOU W, LIN D. Research on air infiltration predictive models for residential building at different pressure[J]. Building Simulation, 2020: 1-12.
    [17] 魏林滨, 李震, 李迪, 等. 被动式房屋气密性测试方法分析与实践应用[J]. 建设科技, 2015, 302(23): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJS201523017.htm

    WEI Linbin, LI Zhen, LI Di, et al. Passive building air tightness test method analysis and practice application[J]. Construction Science and Technology, 2015, 302(23): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJS201523017.htm
    [18] Ziou D, Tabbone S. Edge detection techniques-an overview[J]. Pattern Recognition and Image Analysis C/C of Raspoznavaniye Obrazov I Analiz Izobrazhenii, 1998, 8: 537-559.
    [19] 任浩, 谢磊, 陈惠芳. 基于动态边缘检测的图像锐化算法[J]. 杭州电子科技大学学报, 2012, 32(4): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HXDY201204007.htm

    REN Hao, XIE Lei, CHEN Huifang. Image sharpening algorithm based on dynamic edge detection[J]. Journal of Hangzhou Dianzi University, 2012, 32(4): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HXDY201204007.htm
    [20] JIANG M. Edge enhancement and noise suppression for infrared image based on feature analysis[J]. Infrared Physics & Technology, 2018, 91: 142-152.
    [21] Kim C, Choi J S, Jang H, et al. Automatic detection of linear thermal bridges from infrared thermal images using neural network[J]. Applied Sciences, 2021, 11(3): 931.
    [22] 张玲玲, 许廒, 张继冉, 等. 基于红外图像处理技术的建筑外窗缺陷面积计算研究[J]. 红外技术, 2022, 44(12): 1358-1366. http://hwjs.nvir.cn/article/id/f13166bf-7f5c-4baa-b984-061eea11215c

    ZHANG Lingling, XU Ao, ZHANG Jiran, et al. Research on calculation of defect area of building exterior windows based on infrared image processing technology[J]. Infrared Technology, 2022, 44(12): 1358-1366. http://hwjs.nvir.cn/article/id/f13166bf-7f5c-4baa-b984-061eea11215c
    [23] 潘振, 刘伟, 陈刚, 等. 建筑外窗自然状态渗透能耗测试设备研制[J]. 新型建筑材料, 2019, 46(12): 141-144. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201912036.htm

    PAN ZHEN, LIU Wei, CHEN Gang, et al. Development of testing equipment for permeation energy consumption building outer window in natural state[J]. New Building Materials, 2019, 46(12): 141-144. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201912036.htm
    [24] 季永明, 端木琳. 某近零能耗建筑空气渗透量数值分析[J]. 建筑科学, 2019, 35(10): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201910005.htm

    JI Yongming, DUAN Mulin. Air infiltration rate simulation of typical zero energy building[J]. Building Science, 2019, 35(10): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201910005.htm
    [25] Mijwel M M, Esen A, Shamil A. Overview of neural networks[J]. Computer Engineering Techniques Department, 2019(1): 1-2.
    [26] 张龙, 董峰, 傅雨田. 基于神经网络的红外图像非均匀性校正[J]. 红外技术, 2018, 40(2): 164-169. http://hwjs.nvir.cn/article/id/hwjs201802011

    ZHANG Long, DONG Feng, FU Yutian. Non-uniformity correction for infrared image using neural [J]. Infrared Technology, 2018, 40(2): 164-169. http://hwjs.nvir.cn/article/id/hwjs201802011
    [27] 王晓辉, 刘静蕾, 边会娟, 等. 基于改进BP神经网络的室内环境热舒适度预测与分析[J]. 控制工程, 2021, 28(7): 1437-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF202107023.htm

    WANG Xiaohui, LIU Jinglei, BIAN Huijuan, et al. Prediction and analysis of indoor environment thermal comfort based on improved BP neural network[J]. Control Engineering of China, 2021, 28(7): 1437-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF202107023.htm
    [28] ZHANG X Y, YIN F, ZHANG Y M, et al. Drawing and recognizing Chinese characters with recurrent neural network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 849-862.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  50
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20
  • 修回日期:  2022-07-11
  • 刊出日期:  2023-04-20

目录

    /

    返回文章
    返回