留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大相对孔径大面阵长波红外光学无热化镜头的设计

冯丽军 李训牛 陈洁 周玲玲 董江涛 孙爱平 鲍佳男

冯丽军, 李训牛, 陈洁, 周玲玲, 董江涛, 孙爱平, 鲍佳男. 大相对孔径大面阵长波红外光学无热化镜头的设计[J]. 红外技术, 2022, 44(10): 1066-1072.
引用本文: 冯丽军, 李训牛, 陈洁, 周玲玲, 董江涛, 孙爱平, 鲍佳男. 大相对孔径大面阵长波红外光学无热化镜头的设计[J]. 红外技术, 2022, 44(10): 1066-1072.
FENG Lijun, LI Xunniu, CHEN Jie, ZHOU Lingling, DONG Jiangtao, SUN Aiping, BAO Jianan. Design of Long-wavelength Infrared Athermalization Lens with Large Relative Aperture for Large-array Detectors[J]. Infrared Technology , 2022, 44(10): 1066-1072.
Citation: FENG Lijun, LI Xunniu, CHEN Jie, ZHOU Lingling, DONG Jiangtao, SUN Aiping, BAO Jianan. Design of Long-wavelength Infrared Athermalization Lens with Large Relative Aperture for Large-array Detectors[J]. Infrared Technology , 2022, 44(10): 1066-1072.

大相对孔径大面阵长波红外光学无热化镜头的设计

详细信息
    作者简介:

    冯丽军(1996-),女,云南保山人,学士,主要研究方向为光学设计及红外光学。E-mail:fenglijun96@126.com

  • 中图分类号: O439

Design of Long-wavelength Infrared Athermalization Lens with Large Relative Aperture for Large-array Detectors

  • 摘要: 随着红外探测器技术不断发展和进步,长波红外成像向大相对孔径和大面阵发展。本文设计了一款用于1024×768@12 μm大面阵,F/#=0.8的大相对孔径长波红外镜头。基于不同红外材料的温度特性以及光学被动消热差理论,此镜头采用3种红外材料组合设计和四面非球面矫正像差设计,满足了各视场的点列图及MTF曲线在-40℃~60℃温度范围内变化不大的无热化要求。该镜头具有光通量高、结构紧凑、工艺性较佳等优点。可用于车载辅助驾驶仪、机载吊舱等领域的态势感知。
  • 图  1  光学系统初始结构

    Figure  1.  Structure diagram of initial optical system

    图  2  优化后的光学系统结构

    Figure  2.  Structure diagram of optimized optical system

    图  3  最终的光学系统结构

    Figure  3.  Structure diagram of final optical system

    图  4  光学系统的调制传递函数曲线

    Figure  4.  Curves of optical system MTF

    图  5  光学系统的点列图

    Figure  5.  Spot diagrams of optical system

    图  6  子午方向的公差分析MTF曲线

    Figure  6.  Tolerance analysis MTF curve in tangential direction

    表  1  常见长波红外材料参数

    Table  1.   Common long-wavelength infrared material parameters

    Material Refractive index at 10 μm Abbe number 8~12 μm dn/dT at 10 μm and 20℃/(10-6/℃) CTE αg/(10-6/℃)
    Germanium 4.0028 834 408 6.1
    Gasir-1 2.4944 120 49.7 17
    Gasir-3 2.6105 115 53 17
    Amtir-1 2.5109 113 70.5 12
    Amtir-2 2.6027 110 47.2 13.5
    IG2 2.4944 119 61 12.1
    IG5 2.6033 108 70 14
    IG6 2.7781 159 41 20.7
    ZnS_IR 2.1920 23 41 6.6
    ZnSe 2.4028 52 61 7.1
    下载: 导出CSV

    表  2  光学设计参数

    Table  2.   Parameters of optical system parameters

    Wavelength range/μm 8 to 12 (Central wave 10 μm)
    Efficient focal length/mm 16.8
    F/# 0.8
    Field of view 40°×30°
    Image size(diagonal)/mm 7.68 mm
    Temperature range/℃ −40 to 60
    Classification of athermalization Optical passive
    下载: 导出CSV

    表  3  不同温度下的像面离焦量

    Table  3.   Image defocus at different temperatures

    Temperature/℃ 20 −40 60
    Focus shift/μm 6 11 9
    下载: 导出CSV

    表  4  系统在不同温度下的MTF@42 lp/mm

    Table  4.   MTF of system at 42 lp/mm at different temperatures

    Temperature 20℃ -40℃ 60℃
    0 Field MTF 0.500 0.513 0.474
    0.7 Field MTF Tangential 0.456 0.429 0.349
    Sagittal 0.374 0.248 0.440
    1.0 Field MTF Tangential 0.284 0.158 0.219
    Sagittal 0.373 0.104 0.458
    下载: 导出CSV

    表  5  系统在不同温度下的弥散斑RMS半径

    Table  5.   RMS radius of system spot diagrams at different temperatures

    Temperature/℃ Field RMS spot radius/μm
    20 0 4.242
    0.5 5.203
    0.7 6.600
    1.0 10.947
    -40 0 4.187
    0.5 5.086
    0.7 9.246
    1.0 15.206
    60 0 6.151
    0.5 11.314
    0.7 10.560
    1.0 12.101
    下载: 导出CSV
  • [1] 李其昌, 李兵伟, 王宏臣. 非制冷红外成像技术发展动态及其军事应用[J]. 军民两用技术与产品, 2016(21) : 54-57. doi:  10.3969/j.issn.1009-8119.2016.21.029

    LI Qichang, LI Bingwei, WANG Hongchen. Development and military application of uncooled infrared imaging technology[J]. Dual Use Technologies & Products, 2016(21): 54-57. doi:  10.3969/j.issn.1009-8119.2016.21.029
    [2] Doruk Kucukcelebi, Dogan Ugur Sakarya. Comparison of passive athermalization results of LWIR optical designs utilizing different infrared optical materials[C]//Current Developments in Lens Design and Optical Engineering XXI, 2020: 114820K1-K10.
    [3] 陈潇. 大面阵长波红外光学无热化镜头的设计[J]. 红外技术, 2018, 40(11): 1061-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201811007.htm

    CHEN Xiao. Design of long-wavelength infrared athermalization lens for large-array detector[J]. Infrared Technology, 2018, 40(11): 1061-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201811007.htm
    [4] 张继艳, 林海峰, 黄章超. 基于硫系玻璃的紧凑式大相对孔径长波红外光学系统无热化设计[J]. 应用光学, 2021(5): 790-795. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202105006.htm

    ZHANG Jiyan, LIN Haifeng, HUANG Zhangchao. Compact large relative aperture long wavelength infrared athtermalization optical system with chalcogenide glasses[J]. Journal of Applied Optics, 2021(5): 790-795. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202105006.htm
    [5] 孙爱平, 龚杨云, 陈忠, 等. 大孔径、大视场辅助驾驶仪红外镜头无热化设计[J]. 红外技术, 2013, 35(10): 617-622. doi:  10.11846/j.issn.1001_8891.201310004

    SUN Aiping, GONG Yangyun, CHEN Zhong, et al. Athermal design of a large-aperture, wide-field assisting pilot infrared lens[J]. Infrared Technology, 2013, 35(10): 617-622. doi:  10.11846/j.issn.1001_8891.201310004
    [6] 岑兆丰, 李晓彤. 光学系统温度效应分析和无热化设计[J]. 激光与光电子学进展, 2009, 46(2): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ200902041.htm

    CEN Zhaofeng, LI Xiaotong. Thermal effect analysis and athermal design of optical system[J]. Laser & Optoelectronics Progress, 2009, 46(2): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ200902041.htm
    [7] Owens J C. Optical refractive index of air: dependence on pressure, temperature and composition[J]. Applied Optics, 1967, 6(1): 51-9 doi:  10.1364/AO.6.000051
    [8] 白玉琢, 元延婷, 程海娟, 等. 机械补偿式红外温度自适应光机系统的设计[J]. 红外技术, 2012, 34(11): 652-656. https://opticsjournal.net/M/Articles/OJf2c0a11d25a22523/Abstract

    BAI Yuzhuo, YUAN Yanting, CHENG Haijuan, et al. Design of a mechanical passive athermal infrared lens[J]. Infrared Technology, 2012, 34(11): 652-656. https://opticsjournal.net/M/Articles/OJf2c0a11d25a22523/Abstract
    [9] 赵远, 张宇. 光电信号检测原理与技术[M]. 北京: 机械工业出版社, 2005.

    ZHAO Yuan, ZHANG Yu. Principle and Technology of Photoelectric Signal Detection[M]. Beijing: China Machine Press, 2005.
    [10] 吴海清, 田海霞, 崔莉. 大视场、大相对孔径长波红外机械无热化光学系统设计[J]. 红外, 2015, 36(8): 1-4, 8. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201508001.htm

    WU Haiqing, TIAN Haixia, CUI Li. Design of mechanically athermalized longwave infrared optical system with wide field of view and large relative aperture[J]. Infrared, 2015, 36(8): 1-4, 8. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201508001.htm
    [11] 李升辉, 杨长城. 采用衍射元件实现消热差的中波红外光学系统[C]//中国造船工程学会2009年优秀学术论文集, 2010: 257-263.

    LI Shenghui, YANG Changcheng. Medium wave infrared optical system using diffractive elements to achieve athermalization[C]// Collected Academic Excellent Papers of the Chinese Society of Naval Architects and Marine Engineers in 2009, 2010: 257-263.
    [12] 李林. 应用光学: 4版[M]. 北京: 北京理工大学出版社, 2010.

    LI Lin. Applied Optics[M]. 4th edition, Beijing: Beijing Institute of Technology Press, 2010.
    [13] 沈为民, 薛鸣球, 余建军. 大相对孔径长波红外广角物镜[C]//大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集, 2004: 2331-2341.

    SHEN Weimin, XUE Mingqiu, YU Jianjun. High-speed long-wave infrared wide-angle objectives[C]//Collected Works of Mr. Daheng's 90th Birthday and Collected Papers of the 2004 Academic Conference of the Chinese Optical Society, 2004: 2331-2341.
    [14] 周晓斌, 张衡, 文江华, 等. 长波红外光学系统混合被动无热化设计[J]. 红外技术, 2021, 43(9): 836-839. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202109004.htm

    ZHOU Xiaobin, ZHANG Heng, WEN Jianghua, et al. LWIR optical system design by passive athermalization[J]. Infrared Technology, 2021, 43(9): 836-839. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202109004.htm
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  122
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 修回日期:  2022-04-21
  • 刊出日期:  2022-10-20

目录

    /

    返回文章
    返回