留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气体泄漏热成像检测系统性能的多指标测试评价系统

秦超 张旭 袁盼 金伟其 李力 王霞

秦超, 张旭, 袁盼, 金伟其, 李力, 王霞. 气体泄漏热成像检测系统性能的多指标测试评价系统[J]. 红外技术, 2020, 42(12): 1134-1140.
引用本文: 秦超, 张旭, 袁盼, 金伟其, 李力, 王霞. 气体泄漏热成像检测系统性能的多指标测试评价系统[J]. 红外技术, 2020, 42(12): 1134-1140.
QIN Chao, ZHANG Xu, YUAN Pan, JIN Weiqi, LI Li, WANG Xia. Multi-index Test Evaluation System for Performance of Gas Leak Thermal Imaging Systems[J]. Infrared Technology , 2020, 42(12): 1134-1140.
Citation: QIN Chao, ZHANG Xu, YUAN Pan, JIN Weiqi, LI Li, WANG Xia. Multi-index Test Evaluation System for Performance of Gas Leak Thermal Imaging Systems[J]. Infrared Technology , 2020, 42(12): 1134-1140.

气体泄漏热成像检测系统性能的多指标测试评价系统

基金项目: 

北京市科委计划项目 Z171100002817011

详细信息
    作者简介:

    秦超(1995-),男,湖南人,硕士研究生,主要从事气体泄漏红外成像检测技术研究。E-mail:407394833@qq.com

    通讯作者:

    金伟其(1961-),男,上海人,教授,博士生导师,博士,主要从事夜视与红外技术、光电图像处理、光电检测与仪器等方面的研究工作。E-mail:jinwq@bit.edu.cn

  • 中图分类号: TN219/TN216

Multi-index Test Evaluation System for Performance of Gas Leak Thermal Imaging Systems

  • 摘要: 目前针对气体泄漏热成像检测系统性能的相关评价技术还不够成熟,相应评价指标的测试系统及其测量方法尚无系统的研究报道。而常规热成像系统的性能评价方法难以直接用于评价气体泄漏热成像检测系统对泄漏气体的探测能力,本文结合泄漏气体特性及各测试系统的特点,设计了一种可测量多类性能指标的气体泄漏热成像检测系统性能的测试评价系统,并以乙烯和甲烷气体为检测目标在实验室环境中分别对NECL、MRGC和MDGC三种评价指标进行了实验测量,结果表明了测试评价系统的可行性和实用性。
  • 图  1  多指标测量的评价测试系统原理框图

    Figure  1.  Functional block diagram of the evaluation test system for multi-index measurement

    图  2  黑体双孔挡板和靶标转盘

    Figure  2.  Blackbody double-hole baffle and target turntable

    图  3  双腔红外气室

    Figure  3.  Dual-chamber infrared gas chamber

    图  4  多指标测量的评价测试系统

    Figure  4.  Evaluation test system for multi-index measurement

    图  5  实测中双腔红外气室的成像图

    Figure  5.  Imaging of dual-chamber infrared gas chamber in the actual measurement

    图  6  不同温差乙烯浓度-信噪比测量数据及拟合曲线

    Figure  6.  Measured results and fitting curve of ethylene concentration-SNR at different temperature differences

    图  7  不同温差NECL理想曲线和测量结果的拟合曲线

    Figure  7.  Ideal curve and fitting curves of measured results for NECL at different temperature differences

    图  8  对乙烯、甲烷气体的MRGC和MDGC测量值

    Figure  8.  MRGC and MDGC measured values of ethylene and methane gas by gas thermal imager

    表  1  靶标尺寸

    Table  1.   Target size

    Circular target
    diameter/mm
    0.68 1.28 2.04 2.55 3.83 5.10
    Four-bar target
    cycle/mm
    0.45 0.85 1.36 2.55 4.25 5.10
    下载: 导出CSV
  • [1] Benson R, Madding R, Lucier R, et al. Standoff passive optical leak detection of volatile organic compounds using a cooled InSb based infrared imager[C]//AWMA 99th Annual Meeting Papers, 2006: 131.
    [2] Hagen N, Kester R T, Morlier C G, et al. Video-rate spectral imaging of gas leaks in the longwave infrared[C]//Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV, International Society for Optics and Photonics, 2013, 8710: 871005.
    [3] Bernascolle P F, Elichabe A, Fervel F, et al. Stand-off CWA imaging system: Second sight MS[C]//Proc. of SPIE, 2012, 8358: 83581B.
    [4] Flanigan D F. Detection of organic vapors with active and passive sensors: a comparison[J]. Applied Optics, 1986, 25(23): 4253-4259. doi:  10.1364/AO.25.004253
    [5] Benson R G, Panek J A, Drayton P. Direct measurements of minimum detectable vapor concentrations using passive infrared optical imaging systems[C]//Air and Waste Management Association's Annual Conference and Exhibition (AWMA), 2006: 1025.
    [6] Anderson K K, Tardiff M F, Chilton L K. Predicting the detectability of thin Gaseous plumes in hyperspectral images using basis vectors[J]. Sensors, 2010, 10(9): 8652-8662. doi:  10.3390/s100908652
    [7] Bendavid A, Ifarraguerri A I, Samuels A C. Correlation spectroscopy with diffractive grating synthetic spectra and orthogonal subspace projection filters[J]. Optical Engineering, 2003, 42(2): 325-333. doi:  10.1117/1.1531638
    [8] LI Jiakun, JIN Weiqi, WANG Xia, et al. MRGC performance evaluation model of gas leak infrared imaging detection system[J]. Optics Express, 2014, 22(S7): A1701- A1712. doi:  10.1364/OE.22.0A1701
    [9] 李家琨, 金伟其, 王霞, 等.气体泄漏红外成像检测系统的性能测试方法研究[J]. 北京理工大学学报, 2016, 36(6): 630-634. http://www.cnki.com.cn/Article/CJFDTotal-BJLG201606015.htm

    LI Jiakun, JIN Weiqi, WANG Xia, et al. Research on performance testing method of gas leak infrared imaging detection system[J]. Journal of Beijing Institute of Technology, 2016, 36(6): 630-634. http://www.cnki.com.cn/Article/CJFDTotal-BJLG201606015.htm
    [10] ZHANG Xu, JIN Weiqi, LI Jiakun, et al. Minimum detectable gas concentration performance evaluation method for gas leak infrared imaging detection systems[J]. Applied Optics, 2017, 56(10): 2952-2959. doi:  10.1364/AO.56.002952
    [11] Holst G C. Electro-optical Imaging System Performance[M]. 5th ed: JCD Publishing, 2008: 316-381.
    [12] Holst G C. Testing and Evaluation of Infrared Imaging Systems[M]. 3rd ed: JCD Publishing, 2008: 307-318.
    [13] ASTM. Standard test method for minimum resolvable temperature difference for thermal imaging systems[S]. ASTM E 1213-97, 2009.
    [14] American Society for Testing and Materials. Standard test method for minimum detectable temperature difference for thermal imaging systems[S]. ASTM E 1311-89, 2010.
    [15] ZHANG X, JIN W, YUAN P, et al. Research on passive wide-band uncooled infrared imaging detection technology for gas leakage[C]//International Conference on Optical Instruments and Technology, 2019: doi: 10.1117/12.2542906.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  229
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-03
  • 修回日期:  2020-09-09
  • 刊出日期:  2020-12-26

目录

    /

    返回文章
    返回