留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外隐身材料研究进展

谌玉莲 李春海 郭少云 陈蓉

谌玉莲, 李春海, 郭少云, 陈蓉. 红外隐身材料研究进展[J]. 红外技术, 2021, 43(4): 312-323.
引用本文: 谌玉莲, 李春海, 郭少云, 陈蓉. 红外隐身材料研究进展[J]. 红外技术, 2021, 43(4): 312-323.
SHEN Yulian, LI Chunhai, GUO Shaoyun, CHEN Rong. Research Development of Infrared Stealth Materials[J]. Infrared Technology , 2021, 43(4): 312-323.
Citation: SHEN Yulian, LI Chunhai, GUO Shaoyun, CHEN Rong. Research Development of Infrared Stealth Materials[J]. Infrared Technology , 2021, 43(4): 312-323.

红外隐身材料研究进展

基金项目: 装备预研一般领域基金项目
详细信息
    作者简介:

    谌玉莲(1998-),女,硕士研究生。四川南充人,研究方向为红外隐身材料。E-mail:shenyulian@stu.scu.edu.cn

    通讯作者:

    陈蓉(1985-),女,副研究员,研究方向为红外隐身及特种工程材料,硕士生导师。E-mail:rongchen@scu.edu.cn

  • 中图分类号: TJ04

Research Development of Infrared Stealth Materials

  • 摘要: 随着红外探测技术的迅速发展,如何提高军事目标的红外隐身能力成为一个亟待解决的难题,研究红外隐身材料有着十分重要的意义。本文简要分析了红外隐身材料的隐身机理,综述了低红外发射率材料、控温材料、光子晶体以及智能红外隐身材料等4类红外隐身材料近年来的研究现状,并展望了红外隐身材料未来的发展趋势。
  • 图  1  不同粘度的涂层的红外发射率[24]

    Figure  1.  The infrared emissivity of coatings with different viscosities[24]

    图  2  不同铝粉尺寸的涂层的红外发射率曲线[24]

    Figure  2.  The infrared emissivity curves of the coatings with different aluminum particle sizes[24]

    图  3  不同铝粉含量涂层的红外发射率曲线和SEM图:(a) 15 weight%(wt%); (b) 30 wt%[24]

    Figure  3.  The infrared emissivity curve and SEM images of coatings with different contents of aluminum powder: (a) 15 wt%; (b) 30 wt%[24]

    图  4  电磁波作用于不同表面粗糙度:(a) 光滑表面和(b) 粗糙表面的原理图[32]

    Figure  4.  Schematic view of electromagnetic wave acting on coatings at different surface roughness (a) smooth and (b) rough surface[32]

    图  5  b-PI/BC气凝胶的结构和隔热性能[39]

    Figure  5.  Structure and thermal insulation performance of b-PI/BC aerogels[39]

    图  6  相变材料的分类[2]

    Figure  6.  Classification of PCM[2]

    图  7  不同厚度比的Ge/ZnS光子晶体反射率曲线[50]

    Figure  7.  Reflectivity curves of Ge/ZnS photonic crystal with different thickness ratios[50]

    图  8  不同周期数Ge/TiO2一维光子晶体的反射光谱[55]

    Figure  8.  Calculated reflection spectra of the Ge/TiO2 1DPCs with different numbers of periods[55]

    图  9  PC3的结构及其反射曲线[56]

    Figure  9.  Structure of PC3 and its corresponding reflectivity curve[56]

    表  1  低红外发射率材料

    Table  1.   Low infrared emissivity materials

    Material types Common materials Preparation methods Characteristics
    Inorganic Metal powder Au, Ag, Al, Zn, Cu, Ni, et al. Vapor deposition Better electrical conductivity means lower emissivity; easy oxidation; poor compatible stealth performance
    Doped semiconductor ATO, AZO, ITO, et al. Vapor deposition, magnetron sputtering The infrared emissivity can be adjusted by adjusting the carrier concentration and carrier collision frequency
    Organic Conducting polymer Polyaniline, polypyrrole, polythiophene, polyacetylene, et al. In-situ polymeri- zation Similar to metals/semiconductors in electrical and optical properties; high infrared reflectivity; poor workability
    High infrared transparent polymer Polyolefin, rubber, et al. - Simple molecular structure, weak infrared absorption
    Composite Organic + inorganic - Sol-gel method, blade coating, spray coating Excellent comprehensive performance; many influence factors leading to good adjustability
    下载: 导出CSV
  • [1] 何岷洪. 红外隐身材料的制备及红外发射率性能研究[D]. 太原: 中北大学, 2013.

    HE Minhong. Preparation and Infrared Emissivity Property of Infrared Camouflage Materials[D]. Taiyuan: North University of China, 2013.
    [2] 李冬琳. 低红外发射率橡胶材料的制备及性能研究[D]. 太原: 中北大学, 2014.

    LI Donglin. Preparation and Properties of Low Infrared Emissivity Rubber Materials[D]. Taiyuan: North University of China, 2014.
    [3] 王薇. 低发射率红外隐身材料的制备与应用[D]. 上海: 东华大学, 2015.

    WANG Wei. Preparation and Application of Low Emissivity Infrared Stealth Materials[D]. Shanghai: Donghua University, 2015.
    [4] 许鹏程, 李晓霞, 胡亭. 红外隐身原理及发展[J]. 红外, 2006, 27(1): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI200601005.htm

    XU P C, LI X X, HU T. Principle and development of infrared stealth technology[J]. Infrared, 2006, 27(1): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI200601005.htm
    [5] 付伟. 红外隐身原理及其应用技术[J]. 红外与激光工程, 2002, 31(1): 88-93. doi:  10.3969/j.issn.1007-2276.2002.01.021

    FU W. Principle and application technology of IR stealth[J]. Infrared And Laser Engineering, 2002, 31(1): 88-93. doi:  10.3969/j.issn.1007-2276.2002.01.021
    [6] 叶圣天, 刘朝辉, 等. 国内外红外隐身材料研究进展[J]. 激光与红外, 2015, 45(11): 1285-1291. doi:  10.3969/j.issn.1001-5078.2015.11.001

    YE S T, LIU C H. Research progress of infrared stealth materials[J]. Laser & Infrared, 2015, 45(11): 1285-1291. doi:  10.3969/j.issn.1001-5078.2015.11.001
    [7] Oguchi H, Heilweil E J, Josell D, et al. Infrared emission imaging as a tool for characterization of hydrogen storage materials[J]. Journal of Alloys and Compounds, 2009, 477(1): 8-15. http://www.sciencedirect.com/science/article/pii/S092583880801699X
    [8] Dalapati Gk, Kushwaha Ak, Sharma M, et al. Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance[J]. Progress in Materials Science, 2018, 95: 42-131. doi:  10.1016/j.pmatsci.2018.02.007
    [9] FAN Q, ZHANG L, XING H, et al. Microwave absorption and infrared stealth performance of reduced graphene oxide-wrapped Al flake[J]. J. Mater Sci: Mater Electron, 2020, 31: 3005-3016. doi:  10.1007/s10854-019-02844-2
    [10] QIN Y S. Laser Absorption and infrared stealth properties of Al/ATO composites[J]. Ceramics International, 2019, 45(11): 14312-4315. doi:  10.1016/j.ceramint.2019.04.144
    [11] Rydzek M, Reidinger M, Arduini-Schuster M, et al. Low-emitting surfaces prepared by applying transparent aluminum-doped zinc oxide coatings via a sol-gel process[J]. Thin Solid Films, 2012, 520(12): 4114-118. doi:  10.1016/j.tsf.2011.04.105
    [12] SUN K W, ZHOU, W C, TANG X F, et al. Application of indium tin oxide (ITO) thin film as a low emissivity film on Ni-based alloy at high temperature[J]. Infrared Physics and Technology, 2016, 78: 156-61. doi:  10.1016/j.infrared.2016.07.021
    [13] 李春华, 齐暑华. 高分子材料在红外隐身中的应用[J]. 国外塑料, 2005(9): 26-30. doi:  10.3969/j.issn.1002-5219.2005.09.001

    LI C H, QI S H. The application of polymer materials in infrared stealth[J]. World Plastics, 2005(9): 26-30. doi:  10.3969/j.issn.1002-5219.2005.09.001
    [14] 于海涛. 导电高分子材料在智能隐身技术中的应用[J]. 上海涂料, 2010, 48(2): 26-29. doi:  10.3969/j.issn.1009-1696.2010.02.009

    YU H T. The application of conductive polymer materials in the field of smart stealth technonogy[J]. Shanghai Coatings, 2010, 48(2): 26-29. doi:  10.3969/j.issn.1009-1696.2010.02.009
    [15] YANG C. Synthesis, infrared and microwave absorbing properties of (BaFe Sub(12)O Sub(19) BaTiO Sub(3))/polyaniline composite[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(7): 933-38. doi:  10.1016/j.jmmm.2010.11.072
    [16] 邵春明, 徐国跃, 郭腾超, 等. 改性聚乙烯作为低红外辐射材料的研究[J]. 红外技术, 2008, 30(7): 412-415.

    SHAO C M, XU G Y, et al. Study of modified polyethylene used as low infrared radiation material[J]. Infrared Technology, 2008, 30(7): 412-415.
    [17] 张伟钢, 徐国跃. 低红外发射率材料研究进展[J]. 红外技术, 2015, 37(5): 361-367. http://hwjs.nvir.cn/article/id/hwjs201505002

    ZHANG W G, XU G Y. Research progress of low infrared emissivity materials[J]. Infrared Technology, 2015, 37(5): 361-367. http://hwjs.nvir.cn/article/id/hwjs201505002
    [18] 谢国华, 吴瑞彬, 吴伶芝. 红外隐身材料的现状与展望[J]. 宇航材料工艺, 2001(4): 5-10. doi:  10.3969/j.issn.1007-2330.2001.04.002

    XIE G H, WU R B, WU L Z. Status and development of study on infrared stealthy materials[J]. Aerospace Materials & Technology, 2001(4): 5-10. doi:  10.3969/j.issn.1007-2330.2001.04.002
    [19] 张帆, 王建营, 杜海燕, 等. 红外隐身涂料研究进展[J]. 化学与粘合, 2004(2): 87-91. doi:  10.3969/j.issn.1001-0017.2004.02.011

    ZHANG F, WANG J Y, DU H Y, et al. Development of IR camouflage coating research[J]. Chemistry And Adhesion, 2004(2): 87-91. doi:  10.3969/j.issn.1001-0017.2004.02.011
    [20] 崔锦峰, 马永强, 杨保平, 等. 红外隐身材料的研究现状及发展趋势[J]. 表面技术, 2010, 39(6): 71-74. doi:  10.3969/j.issn.1001-3660.2010.06.020

    CUI J F, MA Y Q, YANG B P, et al. Research situation and development trend of infrared stealth materials[J]. Surface Technology, 2010, 39(6): 71-74. doi:  10.3969/j.issn.1001-3660.2010.06.020
    [21] ZHANG B. Low infrared emissivity of the Cr39Ni7C/inorganic silicate coatings with excellent heat-resistant[J]. Infrared Physics & Technology, 2018, 92: 234 -239. http://www.sciencedirect.com/science/article/pii/S1350449518302354
    [22] 程从亮. 8~14 μm低发射率红外隐身涂料研究[D]. 南京: 南京工业大学, 2005.
    [23] LE Y, WENG X L. Influence of binder viscosity on the control of infrared emissivity in low emissivity coating[J]. Infrared Physics and Technology, 2013, 56: 25-29. doi:  10.1016/j.infrared.2012.09.004
    [24] LIU Z H, BAN G D, YE S T, et al. Infrared emissivity properties of infrared stealth coatings prepared by water-based technologies[J]. Optical Materials Express, 2016, 6(12): 3716-724. doi:  10.1364/OME.6.003716
    [25] HE Y. Preparation and properties of EPDM-based composite coatings with low infrared emissivity[J]. Journal of Energy Engineering, 2016, 142(4): 04016011. doi:  10.1061/(ASCE)EY.1943-7897.0000349
    [26] YU Huijuan. Effects of size, shape and floatage of Cu particles on the low infrared emissivity coatings[J]. Progress in Organic Coatings, 2009, 66(2): 161-66. doi:  10.1016/j.porgcoat.2009.07.002
    [27] 叶圣天, 成声月. 8~14 μm波段水性红外隐身涂料研究[J]. 红外与激光工程, 2016, 45(2): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201602012.htm

    YE S T, CHENG S Y. Water-based infrared stealth coating in 8-14 μm wavebands[J]. Infrared and Laser Engineering, 2016, 45(2): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201602012.htm
    [28] TAN W M, WANG L F, YU F, et al. Preparation and characterization of a Greenish yellow lackluster coating with low infrared emissivity based on Prussian blue modified aluminum[J]. Progress in Organic Coatings, 2014, 77(7): 1163-168. doi:  10.1016/j.porgcoat.2014.04.003
    [29] 李冬琳, 刘亚青, 张志毅, 等. 改性铝粉在天然胶乳隐身涂层中的应用与研究[J]. 中国胶粘剂, 2014, 23(4): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ201404014.htm

    LI D L, LIU Y Q, ZHANG Z Y, et al. Study on modified aluminum powder and its application in natural rubber latex invisibility coating[J]. China Adhesives, 2014, 23(4): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ201404014.htm
    [30] SHAO C M, XU G Y, SHEN X M, et al. Infrared emissivity and corrosion-resistant property of maleic anhydride grafted ethylene -propylene-diene terpolymer(EPDM-g-MAH)/Cu coatings[J]. Surface & Coatings Technology, 2010, 204(24): 4075-080.
    [31] CHUH T, ZHANG Z C, LIU Y J, et al. Silver particles modified carbon nanotube paper/glass fiberre in forced polymer composite material for high temperature infrared stealth camouflage[J]. Carbon, 2016, 98: 557-66. doi:  10.1016/j.carbon.2015.11.036
    [32] YU H J. Low infrared emissivity of polyurethane/Cu composite coatings[J]. Applied Surface Science 2009, 255(12): 6077-081. doi:  10.1016/j.apsusc.2009.01.019
    [33] Larciprete M C, Paoloni S, Orazi N, et al. Infrared emissivity characterization of carbon nanotubes dispersed poly(ethylene terephthalate) fibers[J]. International Journal of Thermal Sciences, 2019, 146: 106109. doi:  10.1016/j.ijthermalsci.2019.106109
    [34] 杨震, 卿宁. 隔热材料的研究现状及发展[J]. 化工新型材料, 2011, 39(5): 21-24. doi:  10.3969/j.issn.1006-3536.2011.05.007

    YANG Z, QING N. Current state for research and development of thermal insulating materials[J]. New Chemical Materials, 2011, 39(5): 21-24. doi:  10.3969/j.issn.1006-3536.2011.05.007
    [35] 费逸伟, 黄之杰, 刘芳, 等. 聚合物微球--新型热红外涂料用填料性能研究[J]. 材料科学与工程学报, 2003, 21(2): 270-273. doi:  10.3969/j.issn.1673-2812.2003.02.030

    FEI Y W, HUANG Z J, LIU F, et al. Research for polymer's tiny particle——a new type ingredient used for thermal infrared coating[J]. Journal of Materials Science And Engineering, 2003, 21(2): 270-273. doi:  10.3969/j.issn.1673-2812.2003.02.030
    [36] 吕晓猛, 刘祥萱. 空心微珠基红外低发射率材料研究[J]. 红外技术, 2008, 30(3): 143-145. doi:  10.3969/j.issn.1001-8891.2008.03.006

    LV X M, LIU X X. Study on hollow particles based low infrared emissivity material[J]. Infrared Technology, 2008, 30(3): 143-145. doi:  10.3969/j.issn.1001-8891.2008.03.006
    [37] 徐凛, 姜勇刚, 冯军宗, 等. 纤维增强Al2O3-SiO2气凝胶隔热复合材料的制备和耐温隔热性能[J]. 南京工业大学学报: 自然科学版, 2020(4): 461-466. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB202004003.htm

    XU L, JIANG Y G, FENG J Z, et al. Preparation and heat-resisting and insulating properties of fiber-reinforced Al2O3-SiO2 aerogels insulation composites[J]. Journal of Nanjing Tech University: Natural Science Edition, 2020(4): 461-466. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXB202004003.htm
    [38] LIANG F R, LIU W J, HAN X X, et al. Improving anti-infrared radiation and heat insulation by potassium hexatitanate whisker-doped Al2O3-SiO2composite xerogel[J]. Royal Society Open Science, 2018, 12(5): 180787 -180787. http://www.zhangqiaokeyan.com/academic-journal-foreign-pmc_royal-society-open-science_thesis/040002342086.html
    [39] ZHANG X, ZHAO X Y, XUE T T, et al. Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation[J]. Chemical Engineering Journal, 2020, 385: 123963. doi:  10.1016/j.cej.2019.123963
    [40] 费逸伟, 李广平, 李争鸣, 等. 相变材料及其在热红外伪装领域的应用研究[J]. 红外技术, 2007, 29(6): 328-332. doi:  10.3969/j.issn.1001-8891.2007.06.005

    FEI Y W, LI G P, LI Z M, et al. Phase change materials and its application in thermal infrared camouflage[J]. Infrared Technology, 2007, 29(6): 328-332. doi:  10.3969/j.issn.1001-8891.2007.06.005
    [41] 郭军红, 邵竞尧, 许芬. RAM-相变微胶囊红外微波隐身复合材料[J]. 精细化工, 2017, 34(12): 1350-1355, 1369. https://www.cnki.com.cn/Article/CJFDTOTAL-JXHG201712006.htm

    GUO J H, SHAOJ Y, XU F. RAM-microencapsulated phase change infrared and microwave stealth composites[J]. Fine Chemicals, 2017, 34(12): 1350-1355, 1369. https://www.cnki.com.cn/Article/CJFDTOTAL-JXHG201712006.htm
    [42] LIU Jin. Preparation of a PCM microcapsule with a graphene oxide platelet-patched shell and its thermal camouflage applications[J]. Ind. Eng. Chem. Res. , 2019, 58(41): 19090-19099. doi:  10.1021/acs.iecr.9b03530
    [43] 鄢冬茂. 微胶囊相变材料用于热红外伪装的应用方式和领域[J]. 现代涂料与涂装, 2017, 20(10): 31-34. doi:  10.3969/j.issn.1007-9548.2017.10.010

    YAN D M. Application of microencapsulated phase change material in thermal infrared camouflage[J]. Modern Paint & Finishing, 2017, 20(10): 31-34. doi:  10.3969/j.issn.1007-9548.2017.10.010
    [44] 邵竞尧, 王文华, 姜子燕, 等. 相变微胶囊及其在红外伪装涂层中的应用[J]. 涂料工业, 2017, 47(2): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-TLGY201702015.htm

    SHAO J Y, WNAG W H, JIANG Z Y, et al. Microencapsulated phase change material and its application in infrared camouflage coating[J]. Paint & Coatings Industry, 2017, 47(2): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-TLGY201702015.htm
    [45] 孟子晖, 张连超, 邱丽莉, 等. 基于光子晶体技术的红外隐身材料研究进展[J]. 兵工学报, 2016, 37(8): 1543-1552. doi:  10.3969/j.issn.1000-1093.2016.08.029

    MENG Z H, ZHANG L C, QIU L L, et al. Research progress on photonic crystal infrared stealth materials technology[J]. Acta Armamentarii, 2016, 37(8): 1543-1552. doi:  10.3969/j.issn.1000-1093.2016.08.029
    [46] 张继魁, 赵大鹏, 汪家春, 等. 基于光子晶体的热红外迷彩[J]. 光学学报, 2016, 36(12): 225-230. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201612028.htm

    ZHANG J K, ZHAO D P, WANG J C. et al. Thermal infrared pattern painting based on photonic crystals[J]. Acta Optica Sinic, 2016, 36(12): 225-230. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201612028.htm
    [47] 卢仪, 卜小海, 李栋先, 等. 基于光子晶体的红外隐身材料研究进展[J]. 激光与光电子学进展, 2019, 56(8): 3 2-41. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201908003.htm

    LU Y, BU X H, LI D X, et al. Research progress of infrared stealth materials based on photonic crystals[J]. Laser & Optoelectronics Progress, 2019, 56(8): 32-41. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201908003.htm
    [48] 张塬昆, 于名讯, 潘士兵, 等. 光子晶体红外隐身材料研究进展[J]. 激光与红外, 2013, 43(9): 967-971. doi:  10.3969/j.issn.1001-5078.2013.09.01

    ZHANG Y K, YU M X, PAN S B. et al. Development of photonic crystal infrared stealth materials[J]. Laser & Infrared, 2013, 43(9): 967-971. doi:  10.3969/j.issn.1001-5078.2013.09.01
    [49] 刘瑞煌, 赵大鹏, 张继魁, 等. 中远红外隐身光子晶体薄膜的制备及隐身特性[J]. 光学学报, 2018, 38(8): 390-395. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201808044.htm

    LIU R H, ZHAO D P, ZHANG J K, et al. Preparation and characteristics of middle and far infrared stealth of photonic crystal film[J]. Acta Optica Sinica, 2018, 38(8): 390-395. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201808044.htm
    [50] 彭亮. 选择性低发射率涂层的设计与制备研究[D]. 长沙: 国防科学技术大学, 2015.

    PENG Liang. Design and Preparation of Selective Low Emissivity Coatings[D]. Changsha: National University of Defense Technology, 2015.
    [51] 张海燕. Cf/SiC基体多层近红外反射膜的制备与性能研究[D]. 南京: 东南大学, 2014.

    ZHANG Haiyan. Preparation and Properties of Near Infrared Multi-Reflecting-Film Based on CF/SiC substrate[D]. Nanjing: Southeast University, 2014.
    [52] Kelly. Thermal barrier coatings design with increased reflectivity and lower thermal conductivity for high-temperature turbine applications[J]. International Journal of Applied Ceramic Technology, 2006, 3(2): 81-93. doi:  10.1111/j.1744-7402.2006.02073.x
    [53] DONG Qi, CHENG Yongzhi, et al. Multi-layer composite structure covered polytetra fluoroethylene for visible-infrared-radar spectral compatibility[J]. Journal of Physics D-Applied Physics, 2017, 50: 50. http://adsabs.harvard.edu/abs/2017JPhD...50X5108Q
    [54] 程阳. 基本周期对一维复周期光子晶体禁带的影响[J]. 半导体技术, 2011, 36(3): 187-189. doi:  10.3969/j.issn.1003-353x.2011.03.003

    CHENG Y. Effects of basic period of one dimensional biperiodic holographic photonic crystals on the photonic band gap[J]. Semiconductor Technology, 2011, 36(3): 187-189. doi:  10.3969/j.issn.1003-353x.2011.03.003
    [55] ZHANG Weigang, LV Dandan. Preparation and characterization of Ge/TiO2 one-dimensional photonic crystal with low infrared-emissivity in the 8–14 μm band[J]. Materials Research Bulletin, 2020, 124: 110747. doi:  10.1016/j.materresbull.2019.110747
    [56] ZHANG Jikui, LIU Ruihuang, ZHAO Dapeng, et al. Design, fabrication and characterization of a thin infrared-visible bi-stealth film based on one-dimensional photonic crystal[J]. Optical Materials Express, 2019, 9(1): 195 -202. doi:  10.1364/OME.9.000195
    [57] LIU Dongqing. Application of variable infrared-emissivity materials to spacecraft thermal control[J]. Journal of National University of Defense Technology, 2012, 34(2): 145-149. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GFKJ201202031.htm
    [58] LANG Fengpei. Review on variable emissivity materials and devices based on smart chromism[J]. International Journal of Thermophysics, 2018, 39(1): 1-20. doi:  10.1007/s10765-017-2325-4
    [59] 路远, 李玉波, 乔亚, 等. 红外发射率控制方法及机理研究[J]. 红外技术, 2008, 30(5): 294-296. doi:  10.3969/j.issn.1001-8891.2008.05.013

    LU Y, LI Y B, QIAO Y, et al. The study on the method and mechanism to control the infrared emissivity[J]. Infrared Technology, 2008, 30(5): 294-296. doi:  10.3969/j.issn.1001-8891.2008.05.013
    [60] LU Yuan. Infrared emissivity modulation technology of WO3 thin film[J]. Infrared Laser Engineering, 2011, 40(7): 1221-1224. http://www.researchgate.net/publication/292789159_Infrared_emissivity_modulation_technology_of_WO_3_thin_film
    [61] TU Liangliang. Study on poly-O-anisidine film with the properties of electrochromism and infrared emissivity modulation[J]. Synthetic Metals, 2011, 161: 2045-2048. doi:  10.1016/j.synthmet.2011.06.032
    [62] XIANG Shanshan. Study on the variable color and emissivity properties of Co doped TiO2 under temperature fluctuations[J]. Optical Materials, 2018, 85: 254-60. doi:  10.1016/j.optmat.2018.08.064
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1104
  • HTML全文浏览量:  592
  • PDF下载量:  409
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-29
  • 修回日期:  2020-08-28
  • 刊出日期:  2021-04-20

目录

    /

    返回文章
    返回