留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

视觉SLAM在动态场景下的图像处理方法

游通飞 孔令华 刘文玉 易定容 殷江

游通飞, 孔令华, 刘文玉, 易定容, 殷江. 视觉SLAM在动态场景下的图像处理方法[J]. 红外技术, 2021, 43(10): 960-967.
引用本文: 游通飞, 孔令华, 刘文玉, 易定容, 殷江. 视觉SLAM在动态场景下的图像处理方法[J]. 红外技术, 2021, 43(10): 960-967.
YOU Tongfei, KONG Linghua, LIU Wenyu, YI Dingrong, YIN Jiang. Image Processing Method for Visual Simultaneous Localization and Mapping[J]. Infrared Technology , 2021, 43(10): 960-967.
Citation: YOU Tongfei, KONG Linghua, LIU Wenyu, YI Dingrong, YIN Jiang. Image Processing Method for Visual Simultaneous Localization and Mapping[J]. Infrared Technology , 2021, 43(10): 960-967.

视觉SLAM在动态场景下的图像处理方法

基金项目: 

国家自然科学基金资助项目 51775200

详细信息
    作者简介:

    游通飞(1994-),男,福建福州人,硕士研究生,研究方向:视觉SLAM和语义分割

    通讯作者:

    孔令华(1963-),男,加拿大人,教授,博士,硕士生导师,研究方向:三维视觉和多光谱检测。E-mail:15392030898@163.com

  • 中图分类号: TP391

Image Processing Method for Visual Simultaneous Localization and Mapping

  • 摘要: SLAM一直是机器人领域的研究热点,近年来取得了万众瞩目的进步,但很少有SLAM算法考虑到动态场景的处理。针对视觉SLAM场景中动态目标的处理,提出一种在动态场景下的图像处理方法。将基于深度学习的语义分割算法引入到ORB_SLAM2方法中,对输入图像进行分类处理的同时剔除人身上的特征点。基于已经剔除特征点的图像进行位姿估计。在TUM数据集上与ORB_SLAM2进行对比,在动态场景下的绝对轨迹误差和相对路径误差精度提高了90%以上。在保证地图精度的前提下,改善了地图的适用性。
  • 图  1  ORB_SLAM2系统线程和结构

    Figure  1.  ORB_SLAM2 system threads and structure

    图  2  PSPNet算法结构

    Figure  2.  PSPNet algorithm structure

    图  3  剔除动态点方法

    Figure  3.  Remove dynamic point method

    图  4  ORB-SLAM2在walking_xyz下的误差(左:轨迹误差;右:相对位姿误差)

    Figure  4.  Error of ORB-SLAM2 under walking_xyz(left: absolute trajectory error; right: relative pose error)

    图  5  本文方法在walking_xyz下的误差(左:轨迹误差;右:相对位姿误差)

    Figure  5.  Error of our method under walking_xyz(left: absolute trajectory error; right: relative pose error)

    图  6  ORB-SLAM2在walking_halfsphere下的误差(左:轨迹误差;右:相对位姿误差)

    Figure  6.  Error of ORB-SLAM2 under walking_halfsphere(left: absolute trajectory error; right: relative pose error)

    图  7  本文方法在walking_halfsphere下的误差(左:轨迹误差;右:相对位姿误差)

    Figure  7.  Error of our method under walking_halfsphere(left: absolute trajectory error; right: relative pose error)

    图  8  ORB-SLAM2在walking_static下的误差(左:轨迹误差;右:相对位姿误差)

    Figure  8.  Error of ORB-SLAM2 under walking_static(left: absolute trajectory error; right: relative pose error)

    图  9  本文方法在walking_static下的误差(左:轨迹误差;右:相对位姿误差)

    Figure  9.  Error of our method under walking_static(left: absolute trajectory error; right: relative pose error)

    图  10  ORB-SLAM2在sitting_static下的误差(左:轨迹误差;右:相对位姿误差)

    Figure  10.  Error of ORB-SLAM2 under sitting_static(left: absolute trajectory error; right: relative pose error)

    图  11  本文方法在sitting_static下的误差(左:轨迹误差;右:相对位姿误差)

    Figure  11.  Error of our method under sitting_static(left: absolute trajectory error; right: relative pose error)

    表  1  绝对轨迹误差对比(ATE)

    Table  1.   Absolute trajectory error comparison

    Sequences ORB-SLAM2 Ours Improvement/%
    Rmse Mean Median Std Rmse Mean Median Std Rmse Mean Median Std
    walking_xyz 0.5357 0.4964 0.4733 0.2014 0.0269 0.0185 0.0151 0.0196 94.98 96.27 96.81 90.27
    walking_halfsphere 0.4318 0.3651 0.3107 0.2305 0.0334 0.0285 0.0243 0.0175 92.26 92.19 92.18 92.41
    walking_static 0.3753 0.3398 0.2963 0.1593 0.0076 0.0068 0.0062 0.0034 97.97 98.00 97.91 97.87
    sitting_static 0.0082 0.0071 0.0063 0.0041 0.0062 0.0054 0.0047 0.0031 24.39 23.94 25.40 24.39
    下载: 导出CSV

    表  2  相对位姿误差对比(RPE)

    Table  2.   Relative pose error comparison

    Sequences ORB-SLAM2 Ours Improvement/%
    Rmse Mean Median Std Rmse Mean Median Std Rmse Mean Median Std
    walking_xyz 0.7856 0.6444 0.5714 0.4493 0.0400 0.0280 0.0222 0.0285 94.91 95.65 96.11 93.66
    walking_halfsphere 0.6200 0.4957 0.4705 0.3724 0.0474 0.0414 0.0373 0.0231 92.35 91.65 92.07 93.80
    walking_static 0.5354 0.3946 0.1802 0.3618 0.0112 0.0102 0.0096 0.0048 97.91 97.42 94.67 98.67
    sitting_static 0.0127 0.0112 0.0101 0.0060 0.0093 0.0081 0.0073 0.0044 26.77 27.68 27.72 26.67
    下载: 导出CSV

    表  3  相对旋转误差对比(RRE)

    Table  3.   Relative rotation error comparison

    Sequences ORB-SLAM2 Ours Improvement/%
    Rmse Mean Median Std Rmse Mean Median Std Rmse Mean Median Std
    walking_xyz 14.3695 11.7969 0.1856 8.2046 0.8776 0.6192 0.0082 0.6220 93.89 94.75 95.58 92.42
    walking_halfsphere 14.5176 12.0261 0.2177 8.1323 1.0316 0.8956 0.0139 0.5118 92.89 92.55 93.62 93.71
    walking_static 9.6864 7.1088 0.0558 6.5796 0.3021 0.2724 0.0044 0.1306 96.88 96.17 92.11 98.02
    sitting_static 0.3572 0.3220 0.0054 0.1546 0.3347 0.2981 0.0048 0.1523 6.30 7.42 11.11 1.49
    下载: 导出CSV

    表  4  两种方法在TUM数据集的耗时

    Table  4.   Time consuming of the two methods in TUM dataset

    Methods 1 2 3 Average
    ORB-SLAM2 54.314 58.629 59.373 57.439
    Ours 81.241 79.298 78.505 79.681
    下载: 导出CSV
  • [1] Durrant-Whyte H, Bailey Tim. Simultaneous localization and mapping: part I[J]. IEEE Robotics & Amp Amp Automation Magazine, 2006, 13(2): 99-10. http://vigir.missouri.edu/~gdesouza/Research/MobileRobotics/Simultaneous%20localization%20and%20mapping.%20IEEE%20Robotics%20and%20Automation%20magazine-%20Part%201,%20H.%20Durrant-White%20and%20T.%20Bailey.pdf
    [2] 张金凤, 石朝侠, 王燕清. 动态场景下基于视觉特征的SLAM方法[J]. 计算机工程, 2020, 46(10): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC202010012.htm

    ZHANG Jinfeng, SHI Chaoxia, WANG Yanqing. SLAM method based on visual features in dynamic scene[J]. Computer Engineering, 2020, 46(10): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC202010012.htm
    [3] 江国来. 共融移动服务机器人导航与交互关键技术研究[D]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2019.

    JIANG Guolai. Research on Key Technologies of Navigation and Interaction of Inclusive Mobile Service Robot[D]. Shenzhen: University of Chinese Academy of Sciences, 2019.
    [4] HAN Shuangquan, XI Zhihong. Dynamic scene semantics SLAM based on semantic segmentation[J]. IEEE Access, 2020, 8: 43563-43570. doi:  10.1109/ACCESS.2020.2977684
    [5] WANG Kai, LIN Yimin, WANG Luowei, et al. A unified framework for mutual improvement of SLAM and semantic segmen- tation[C]//International Conference on Robotics and Automation (ICRA) of IEEE, 2019: 5224-5230.
    [6] Bescos Berta, Fácil José M, Civera Javier, et al. Dyna SLAM: tracking, mapping and in painting in dynamic scenes[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4076-4083. doi:  10.1109/LRA.2018.2860039
    [7] YU Chao, LIU Zuxin, LIU Xinjun, et al. DS-SLAM: a semantic visual SLAM towards dynamic environments[C]//IEEE International Conference on Intelligent Robots and Systems(IROS), 2018: 1168-1174.
    [8] 王召东, 郭晨. 一种动态场景下语义分割优化的ORB_SLAM2[J]. 大连海事大学学报, 2018, 44(4): 121-126. doi:  10.3969/j.issn.1671-7031.2018.04.020

    WANG Zhaodong, GUO Chen. An improved ORB_SLAM2 in dynamic scene with semantic segmentation[J]. Journal of Dalian Maritime University, 2018, 44(4): 121-126. doi:  10.3969/j.issn.1671-7031.2018.04.020
    [9] 王晨, 汤心溢, 高思莉. 基于深度卷积神经网络的红外场景理解算法[J]. 红外技术, 2017, 39(8): 728-733. http://hwjs.nvir.cn/article/id/hwjs201708010

    WANG Chen, TANG Xinyi, GAO Sili. Infrared scene understanding algorithm based on deep convolutional neural network[J]. Infrared Technology, 2017, 39(8): 728-733. http://hwjs.nvir.cn/article/id/hwjs201708010
    [10] Mur-Artal Raul, D Tardos Juan. ORB-SLAM2: an opensource slam system for monocular, stereo, and rgb-d cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262. doi:  10.1109/TRO.2017.2705103
    [11] ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6230-6239.
    [12] 李瀚超, 蔡毅, 王岭雪. 全局特征提取的全卷积网络图像语义分割算法[J]. 红外技术, 2019, 41(7): 595-599, 615. http://hwjs.nvir.cn/article/id/hwjs201907001

    LI Hanchao, CAI Yi, WANG Lingxue. Image semantic segmentation based on fully convoluted network with global feature extraction[J]. Infrared Technology, 2019, 41(7): 595-599. http://hwjs.nvir.cn/article/id/hwjs201907001
    [13] Sturm Jürgen, Engelhard Nikolas, Endres Felix, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]//RSJ Int. Conf. Intell. Robots Syst. of IEEE, 2012: 573-580.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  36
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-06
  • 修回日期:  2020-07-28
  • 刊出日期:  2021-10-20

目录

    /

    返回文章
    返回