留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向双模态红外图像融合算法选取的联合可能性落影构造

吴强 吉琳娜 杨风暴 郭小铭

吴强, 吉琳娜, 杨风暴, 郭小铭. 面向双模态红外图像融合算法选取的联合可能性落影构造[J]. 红外技术, 2023, 45(2): 178-187.
引用本文: 吴强, 吉琳娜, 杨风暴, 郭小铭. 面向双模态红外图像融合算法选取的联合可能性落影构造[J]. 红外技术, 2023, 45(2): 178-187.
WU Qiang, JI Linna, YANG Fengbao, GUO Xiaoming. Joint Possibility Drop Shadow Construction for Selection of Bimodal Infrared Image Fusion Algorithm[J]. Infrared Technology , 2023, 45(2): 178-187.
Citation: WU Qiang, JI Linna, YANG Fengbao, GUO Xiaoming. Joint Possibility Drop Shadow Construction for Selection of Bimodal Infrared Image Fusion Algorithm[J]. Infrared Technology , 2023, 45(2): 178-187.

面向双模态红外图像融合算法选取的联合可能性落影构造

基金项目: 

山西省高等学校科技创新项目 2020L0264

国家自然科学基金 61702465

山西省应用基础研究计划 201901D211238

中北大学研究生科技立项项目 2022180501

详细信息
    作者简介:

    吴强(1995-),男,硕士研究生,主要研究方向为红外信息处理,E-mail: 2507066796@qq.com

    通讯作者:

    吉琳娜(1988-),女,副教授,硕士生导师,博士,主要研究方向为智能信息处理,Email: jlnnuc@163.com

  • 中图分类号: TP391

Joint Possibility Drop Shadow Construction for Selection of Bimodal Infrared Image Fusion Algorithm

  • 摘要: 针对现实场景中双模态红外图像融合对异类差异特征协同优化融合的需求,且现有差异特征属性无法根据差异特征多个属性的变化针对性地调整融合算法进行有效驱动,导致融合效果差的问题,提出了面向双模态红外图像融合算法选取的联合可能性落影构造方法。首先计算双模态红外图像多融合算法下不同差异特征的融合有效度、统计差异特征分布特性;再构造差异特征融合有效度的可能性分布,通过最小二乘估计法拟合可能性分布函数;然后通过择优比较法对不同差异特征融合有效度的可能性分布进行对比分析,确定差异特征可能性分布函数投影权重,构造联合可能性落影函数;最后分析联合可能性落影函数截集水平,结合差异特征分布特性构建融合性能指标动态选取最优融合算法。实验结果表明,本文方法所选出的最优融合算法在主客观综合分析上优于其他算法,验证了本文将联合可能性落影运用于双模态红外图像最优融合算法选取中有效性和合理性。
  • 图  1  双模态红外图像融合算法选取流程

    Figure  1.  Flow chart of Bimodal infrared image fusion algorithm selection

    图  2  两组双模态红外源图像

    Figure  2.  Source dual-mode infrared images of two groups

    图  3  基于融合算法集的融合图像结果

    Figure  3.  Fusion image results based on fusion algorithm set

    图  4  差异特征融合有效度V5k散点图

    Figure  4.  Scatter diagram of effectiveness of differential feature fusion V5k

    图  5  差异特征可能性分布π5k散点图

    Figure  5.  Differential feature possibility distribution scatter diagram

    图  6  可能性分布函数曲线Π5k(x)(k=1, 2, 3, 4)

    Figure  6.  Possibility distribution function Π5k(x)(k=1, 2, 3, 4)

    图  7  联合可能性落影函数

    Figure  7.  Joint possibility drop shadow function

    (Note: "Dotted line": Π5k(x)(k=1, 2, 3, 4), "Solid line": Π5(x))

    图  8  差异特征频次分布

    Figure  8.  Differential characteristic frequency distribution

    图  9  总特征频次分布Ω5c及可能性测度权重W5c

    Figure  9.  Total feature frequency distribution Ω5c and probability measure weight W5c

    图  10  两组实验源图像以及对应融合算法的融合图像的融合效果

    Figure  10.  The fusion effect of two groups of experimental images and corresponding fusion algorithm

    表  1  可能性分布重要性比较权重

    Table  1.   Possibility distribution significance comparison weight

    Πr1(x) Πr2(x) Πr3(x) Πrk(x) $\sum {} $
    Πr1(x) - p12 p13 p1k $\sum\limits_{i = 1}^k {{p_{1i}}} $
    Πr2(x) p21 - p23 p2k $\sum\limits_{i = 1}^k {{p_{2i}}} $
    Πr3(x) p31 p32 - p3k $\sum\limits_{i = 1}^k {{p_{3i}}} $
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ - $ \vdots $ $ \vdots $
    Πrk(x) pk1 pk2 pk3 - $\sum\limits_{i = 1}^k {{p_{4i}}} $
    下载: 导出CSV

    表  2  可能性分布重要性比较权重

    Table  2.   Possibility distribution significance comparison weight

    Πr1(x) Πr2(x) Πr3(x) Πr4(x) $\sum {} $
    Πr1(x) - -0.3027 1.653 -0.357 0.9933
    Πr2(x) 1.3027 - 0.6645 0.3715 2.3387
    Πr3(x) -0.653 0.3355 - 0.2277 -0.0898
    Πr4(x) 1.357 0.6285 0.7723 - 2.7578
    下载: 导出CSV

    表  3  2组实验图各融合算法的评价指标结果及算法排序结果

    Table  3.   The evaluation index results and algorithm sorting results of each fusion algorithm are shown in the experimental figure

    Group Algorithm Evaluation index
    IE STD SF AG QAB/F PSNR MI SSIM 指标Sr
    1 DTCWT 7.1032 41.7991 17.2066 7.3088 0.4567 13.9688 4.0601 0.6254 6.5626
    DWT 6.9178 49.221 15.3076 5.9679 0.3748 13.4643 4.6401 0.5527 6.1618
    GFF 7.2938 76.9109 9.8984 3.8633 0.3348 20.0536 5.6477 0.5902 6.5204
    LAP 7.535 81.6771 9.263 3.4741 0.2606 12.9339 4.5019 0.5327 5.722
    MSVD 6.9698 46.1986 20.4573 8.5828 0.4187 13.9233 3.0158 0.608 6.6079
    WPT 7.0584 39.8688 16.8657 7.3166 0.3977 13.7724 3.8075 0.6091 6.3075
    2 DTCWT 6.717 26.2934 26.2827 14.8888 0.4665 14.3888 1.4123 0.4472 6.8339
    DWT 6.3252 22.7062 9.2047 3.6809 0.1967 13.8362 3.6738 0.4315 5.2301
    GFF 6.8453 28.8261 6.0703 3.1285 0.2189 22.7237 3.6564 0.4846 5.9056
    LAP 6.3622 22.5517 4.9391 2.5674 0.1554 15.0067 2.2397 0.4544 4.613
    MSVD 6.2492 22.0069 22.9027 12.3872 0.228 14.2299 1.337 0.4096 5.7039
    WPT 6.4405 21.6285 21.3231 12.1253 0.3352 14.8892 1.294 0.3972 5.8625
    下载: 导出CSV
  • [1] 段锦, 付强, 莫春和, 等. 国外偏振成像军事应用的研究进展(上)[J]. 红外技术, 2014, 36(3): 190-195. http://hwjs.nvir.cn/article/id/hwjs201403003

    DUAN Jin, FU Qiang, MO Chunhe, et al. Review of polarization imaging technology for international military application I[J]. Infrared Technology, 2014, 36(3): 190-195. http://hwjs.nvir.cn/article/id/hwjs201403003
    [2] 韩平丽. 红外辐射偏振特性及目标识别研究[D]. 西安: 西安电子科技大学, 2014.

    HAN Pingli. Study on Polarization Characteristics and Target Recognition of Infrared Radiation [D]. Xi 'an: Xidian University, 2014.
    [3] 朱攀. 红外与红外偏振/可见光图像融合算法研究[D]. 天津: 天津大学, 2017.

    ZHU Pan. Study on Fusion Algorithm for Infrared and Infrared Polarization/Visible Images[D]. Tianjin: Tianjin University, 2017.
    [4] LIN Suzhen, WANG Dongjuan, ZHU Xiaohong, et al. Fusion of infrared intensity and polarization images using embedded multi-scale transform[J]. Optik-International Journal for Light and Electron Optics, 2015, 126: 5127-5133. doi:  10.1016/j.ijleo.2015.09.154
    [5] 朱攀, 刘泽阳, 黄战华. 基于DTCWT和稀疏表示的红外偏振与光强图像融合[J]. 光子学报, 2017, 46(12): 213-221. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201712028.htm

    ZHU Pan, LIU Zeyang, HUANG Zhanhua. Infrared polarization and light intensity image fusion based on dual-tree complex wavelet transform and sparse representation [J]. Acta Photonica Sinica, 2017, 46(12): 213-221. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201712028.htm
    [6] LIU Z, Tsukada K, Hanasaki K, et al. Image fusion by using steerable pyramid[J]. Pattern Recognition Letters, 2001, 22(9): 929-939. doi:  10.1016/S0167-8655(01)00047-2
    [7] Vanmali A V, Gadre V M. Visible and NIR image fusion using weight-map-guided Laplacian-Gaussian pyramid for improving scene visibility[J]. Sadhana-Academy Proceedings in Engineering Sciences, 2017, 42(7): 1063-1082.
    [8] LIU Gang, JING Zhongliang, SUN Shaoyuan, et al. Image fusion based on expectation maximization algorithm and steerable pyramid[J]. Chinese Optics Letters, 2004(7): 386-389.
    [9] 徐磊, 田淑昌, 崔灿, 等. 基于改进离散小波变换的多模态医学图像融合方法[J]. 中国医疗设备, 2016, 31(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CQYX201621002.htm

    XU Lei, TIAN Shuchang, CUI Can, et al. Multimodal medical image fusion method based on improved discrete wavelet transform[J]. China Medical Equipment, 2016, 31(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CQYX201621002.htm
    [10] HAN Xiao, ZHANG Lili, YAO Li, et al. Fusion of infrared and visible images based on discrete wavelet transform[C]//Proceedings of the Second Symposium on New Detection Technology and Its Application, National Defense Optoelectronics Forum, 2015: 38.
    [11] YAN X, QIN H, LI J, et al. Infrared and visible image fusion with spectral graph wavelet transform[J]. JOSAA, 2015, 32(9): 1643-1652. doi:  10.1364/JOSAA.32.001643
    [12] ZHAN L, ZHUANG Y, HUANG L. Infrared and visible images fusion method based on discrete wavelet transform[J]. Journal of Computers (Taiwan), 2017, 28(2): 57-71.
    [13] MA Jiayi, MA Yong, LI Chang. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. doi:  10.1016/j.inffus.2018.02.004
    [14] 杨风暴, 吉琳娜. 双模态红外图像差异特征多属性与融合算法间的深度集值映射研究[J]. 指挥控制与仿真, 2021, 43(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QBZH202102001.htm

    YANG Fengbao, JI Linna. Research on depth set value mapping between multi-attribute and fusion algorithm of dual-mode infrared image difference feature [J]. Command Control and Simulation, 2021, 43(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QBZH202102001.htm
    [15] 张雷, 杨风暴, 吉琳娜. 差异特征指数测度的红外偏振与光强图像多算法融合[J]. 火力与指挥控制, 2018, 43(2): 49-54, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYZ201802011.htm

    ZHANG Lei, YANG Fengbao, JI Linna. Multi-algorithm fusion of infrared polarization and light intensity images based on differential feature index measure [J]. Fire Control & Command Control, 2018, 43(2): 49-54, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYZ201802011.htm
    [16] 杨风暴, 吉琳娜, 王肖霞. 可能性理论及应用[M]. 北京: 科学出版社, 2019.

    YANG Fengbao, JI Linna, WANG Xiaoxia. Possibility Theory and Application [M]. Beijing: Science Press, 2019.
    [17] LIU Zhaodong, CHAI Yi, YIN Hongpeng, et al. A novel multi-focus image fusion approach based on image decomposition[J]. Information Fusion, 2017, 35: 102-116.
    [18] Toet A, Hogervorst M A. Multiscale image fusion through guided filtering[C]//Proceedings of SPIE, 2016: 99970J.
    [19] SONG Y, XIAO J, YANG J, et al. Research on MR-SVD based visual and infrared image fusion[C]//Proceedings of the International Symposium on Optoelectronic Technology and Application, 2016: 101571.
    [20] ZHANG W J, KANG J Y. QuickBird panchromatic and multi-spectral image fusion using wavelet packet transform[C]//International Conference on Intelligent Computing (ICIC), 2006, 344: 976-981.
    [21] Roberts J W, Van Aardt J, Ahmed F. Assessment of image fusion procedures using entropy image quality and multispectral classification[J]. Journal of Applied Remote Sensing, 2008, 2(1): 023522.
    [22] Eskicioglu A M, Fisher P S. Image quality measures and their performance[J]. IEEE Trans. Commun., 1995, 43(12): 2959-2965.
    [23] CUI G, FENG H, XU Z, et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition[J]. Optics Communications, 2015, 341: 199-209.
    [24] Ratliff B M, LeMaster D A. Adaptive scene-based correction algorithm for removal of residual fixed pattern noise in microgrid image data[C]//Polarization: Measurement, Analysis, and Remote Sensing X, 2012, 8364: 83640N.
    [25] ZHOU Wang, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
    [26] QU G, ZHANG D, YAN P. Information measure for performance of image fusion[J]. Electronics Letters, 2002, 38(7): 313-315.
    [27] ZHOU Wang, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans. Image Process, 2004, 13(4): 600-612.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  34
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-02
  • 修回日期:  2022-08-02
  • 刊出日期:  2023-02-20

目录

    /

    返回文章
    返回